光波系统中光信号的传输特光学PPT课件.ppt_第1页
光波系统中光信号的传输特光学PPT课件.ppt_第2页
光波系统中光信号的传输特光学PPT课件.ppt_第3页
光波系统中光信号的传输特光学PPT课件.ppt_第4页
光波系统中光信号的传输特光学PPT课件.ppt_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

回顾 通信的目的 信息准确传送 光纤通信系统设计的基本要求 能将任何信息无失真或逼真地从发送端传送到用户终端 这首先要求作为传输媒质的光纤应具有均匀 透明的理想传输特性 是一种无损 无色散的线性系统 任何信号均能以相同速度无损无畸变地传输 实际光纤通信系统中存在损耗 色散 非线性 1 问题的提出 在这种系统中信号到底如何传输 其传输特性 传输能力究竟如何 影响光纤系统信号传输特性的主要因素除损耗 色散和非线性外 还与光源的脉宽与谱宽和信号本身的速率与带宽有关 损耗的影响导致传输距离的缩短 可用中继器或光放大增益克服 2 色散将导致脉冲展宽 上一章已进行了直观形象的分析 对于谱宽由光源光谱决定而不是由脉冲傅里叶频谱决定的脉冲 给出了色散影响的一阶估计 通常脉冲展宽的程度不仅决定于色散和光源谱宽 而且还与输入脉冲的宽度和形状有关 非线性对信号传输的影响不仅引起损耗 也将引起信号脉冲展宽 在多信道系统中还会引起信道间串音 本章将对色散和非线性这两个基本因素对信号传输的影响进行分析 3 3 1色散影响下光信号的传输特性3 1 1光脉冲传输的基本方程 在单模光纤中传播的光场的每一个频率分量都是平面波 可写成式中 G 0 为初始振幅 为模式传播常数 F x y 为模式场分布 通常F x y 也与频率和非线性有关 但对谱宽 0的光脉冲和弱非线性近似下 其依存关系可忽略不计 这里 0是脉冲频谱的中心频率 称为载频 4 在 范围的不同谱分量的光场在光纤中传输关系对上式作傅氏逆变换 得脉冲展宽是由 的频率依赖性引起的 不同频率分量的光场将以不同的 传输 5 对 0的准单色光脉冲 其不同频率分量的 可在 0附近作泰勒展开求得式中 0 m dm d m 1 1 vg vg为群速度 2为群速色散 GVD 3为高阶色散 与色散斜率S有关 这样即可求得G z t 6 将G z t 分解为按载频 0变化的快变部分exp j t 和按 0而变化的慢变部分A z t 可得G z t A z t exp j 0z 0t 则可发现慢变振幅A z t 为 7 式中 A 0 G 0 为A 0 t 的傅氏变换 慢变部分亦叫慢变包络 这样的分析方法称为慢变包络近似 为分析慢变包络随距离的演化规律 对上式求导 并将 用 t代替 则时域慢变包络方程可写为上式表明 在光脉冲传输过程中 其波形是如何受光纤色散的影响 8 3 1 2光脉冲参数与色散展宽 1 高斯形光脉冲的脉宽与谱宽光波通信系统中大都采用半导体激光器作为光源 一般它产生的光脉冲信号是高斯形的 而且均伴随不同程度的啁瞅分量 可写为 9 啁啾 是通信技术有关编码脉冲技术中的一种术语 是指对脉冲进行编码时 其载频在脉冲持续时间内线性地增加 当将脉冲变到音频地 会发出一种声音 听起来像鸟叫的啁啾声 故名 啁啾 后来就将脉冲传输时中心波长发生偏移的现象叫做 啁啾 例如在光纤通信中由于激光二极管本身不稳定而使传输单个脉冲时中心波长瞬时偏移的现象 也叫 啁啾 10 频率啁啾 这是因为当激光器被调制时载流子浓度被调制从而引起折射率随时间变化导致纵模频率发生变化称为频率啁啾 频率啁啾在时间上平均的结果是使单个纵模的谱宽展宽在接近张弛振荡频率处展宽最为明显 11 当不考虑光源啁啾时 C 0 其波形如图所示 图3 1中Ao为峰值振幅 T0代表在1 e强度点的半宽 实际上常用半极大值全宽度或半高全宽 FWHM 表示 T0与半高全宽TFWHM的关系为TFWHM 2 ln2 1 2T0 C称为啁瞅参数 代表产生光脉冲时引入的附加线性调频 说明光脉冲的载频随时间变化 12 图3 1高斯脉冲特征参数 13 有啁啾的脉冲 其傅氏频谱比无啁啾脉冲的宽 振幅1 e处的频谱的半宽度为 1 C2 1 2 T0通常谱宽 和T0可用仪器测出 由此可求得C C值可正可负 代表产生光脉冲时引入的附加线性调频 C 0表示从脉冲前沿到后沿变化时 瞬时频率线性增加 称为正啁啾或上啁啾 C 0则相反 称为负啁啾或下啁啾 14 2 光脉冲的色散展宽带啁啾的光脉冲在光纤中传输时将会加剧色散展宽 这是不希望的 应设法消除 无啁啾 C 0 的光脉冲 其脉宽谱宽积满足关系 T0 1 这种脉冲谱宽最窄 称为变换限制脉冲 出现啁啾时 谱宽增加 1 C2 1 2倍 15 为分析色散对啁啾高斯脉冲在光纤中传输的影响 在以群速移动的新坐标系中来考察光脉冲的演变 新坐标为T t z vg t z则时域慢变包络方程可改写为利用傅氏变换 求得上式的解为 16 讨论 2和 3对光脉冲传输特性的影响 1 2的影响 当 3 0 即光脉冲载波是远离零色散波长时 方程的积分可解析求得 结果为 17 由此式可见 高斯脉冲在光纤中传输时仍保持高斯形 而脉宽则随z而增加式中 T1类似于T0 定义为展宽后的脉冲的1 e强度点的半宽 上式显示 光纤的色散 2 和光源的啁啾 C 对脉冲展宽影响的定量关系 18 图3 2啁啾高斯脉冲展宽因子T1 T0随传输距离z LD的变化曲线 LD T02 2 称为色散长度 19 对非啁啾脉冲 C O 脉宽随 1 z LD 2 1 2成比例展宽 在z LD处展宽为初始输入脉宽的 2 倍 对C 0的啁啾脉冲 在传输过程中 有可能展宽 亦有可能压窄 这取决于 2与C是同号还是异号 同号时 2C 0 啁啾高斯脉冲单调展宽的速度比非啁啾脉冲的快 异号时 2C 0 在传输的初始段 脉冲宽度变窄 并在距离zmin处压缩至最窄 此处zmin值为zmin C 1 C2 LD 20 而最窄的脉宽为Tmin T0 1 C2 1 2由式 3 1 11 和上式可得 Tmin 1 可见在zmin处 初始输入的啁啾高斯脉冲已演化为变换限制脉冲 2C 0时可以实现对初始脉冲的压缩 当C 0时 可以采用正色散光纤对光脉冲进行压缩 这在光纤通信系统设计中 将可加以利用 对由负色散引起的展宽进行补偿以提高通信容量 称为色散补偿 21 2 3的影响 当 3 0 即高阶色散的影响不能忽略时 经严格分析发现 高斯脉冲在传输过程中不再保持原高斯脉冲形状 而是形成了一种振荡结构的尾部 这种脉冲就不能用T0或TFWHM来确切描述其宽度 而通常用均方根脉宽来描述 它定义为 2 1 2角括号代表对强度分布的平均 22 通过分析 对具有均方根谱宽 的高斯光谱 得到的展宽因子的解析表示为式中V 2 0 该式提供了一般性光源产生的光脉冲在色散影响下产生的脉冲展宽 23 3 2与 3影响的比较 由上分析可见 脉冲沿光纤的传输演变依赖于 2和 3相对大小 而且它们又依赖于工作波长 与零色散波长 0的相对偏移程度 在零色散波长处传输信号时 高阶色散的影响是不容忽视的 为比较 2和 3对脉冲传输影响的重要程度 引入与高阶色散 3有关的色散长度L D 定义为式中 T0为脉宽 24 当L D LD时 高阶色散影响起主要作用 这个条件不仅与色散的相对值亦即与光源载波波长有关 而且与光脉冲宽度T0有关 因此通常情况下 3的影响可以忽略 图3 3展示了无啁啾高斯脉冲在z 5L D处 2 0 实线 和 2 3 T0 LD 虚线 两种情况下脉冲的形状 为比较 图中用点线画出了输入高斯脉冲波形 可见 考虑高阶色散时 会引起脉冲形状畸变 形成不对称的前后沿结构 25 图3 3群速色散 2 和高阶色散 3 对脉冲形状的影响 26 在 3 0时 后沿出现振荡形结构 3 0时 前沿会出现振荡结构 在 2 0时 振荡幅度增大 谷底逐渐降至零 然而若同时引入 2时 即使不太大 这种振荡幅度就会显著减小 当引入的 2 3 T0 即LD L D时 振荡几乎消失 但后沿出现了一个长的拖尾 当 2增大至LD L D时 脉冲形状就近似为高斯形 高阶色散就不起主要作用了 27 3 色散诱导的线性频率啁啾 脉宽变化反映脉冲频谱结构发生了变化 即使初始脉冲不含啁啾成分 但在色散光纤中传输时 却变成了含啁啾成分的脉冲 这种现象称为色散诱导线性频率啁啾 色散导致的啁啾频率分量 不同频率分量在光纤内以略微不同的速度传输 导致脉冲展宽 这是光纤色散对光脉冲传输特性影响过程的两方面的表现 色散导致啁啾 啁啾促进了脉冲展宽 在正色散区红光频率分量比蓝光分量传输速度快 而在负色散区则相反 28 对于无初始啁啾脉冲 C 0 无论在正色散区还是负色散区 都将导致相同的展宽量 若 2 0 则所有频率分量都同时到达 脉冲宽度就保持不变 但是对初始啁啾脉冲 C 0 情况就不同若满足条件 2C 0时 色散啁啾与初始啁啾符号相反 将导致净啁啾减小 脉宽变窄 最小脉冲宽度出现在两啁啾相等处 随着传输距离的增加 色散啁啾超过初始啁啾而起支配作用 脉冲又开始展宽 出现图3 2中脉宽随传输距离的变化趋势 29 3 2光纤带宽与色散对通信能力的限制 主要讨论 带宽B 群速色散GVD及系统通信容量BL之间的关系3 2 1宽谱光源脉冲传输时的展宽与极限比特率3 2 2窄谱光源脉冲传输时的展宽与极限比特率3 2 3光纤与光纤系统的带宽 30 3 2 1宽谱光源脉冲传输时的展宽与极限比特率 1 假定系统的工作波长远离零色散波长 2 0 3 0 其次忽略光源啁啾的影响 C 0 则展宽因子可近似为式中 为均方根光源谱宽 在色散影响下输出光脉冲脉宽为式中 D D L 为色散导致的脉冲展宽量 宽谱光源 光源频谱较宽的光脉冲传输时的展宽 这种情况相应于V l V 2 0 31 为防止色散展宽导致相邻脉冲重叠 展宽脉冲应限制在所分配的比特时隙 TB 内 而TB 1 B B为比特率 根据这一准则可求得 与B的关系 通常规定 TB 4或4B 1 这样至少有95 的脉冲能量被限制在比特时隙内 因此极限比特率为B 1 4 对于很窄的输入脉冲 D D L 则有B l 4L D 32 2 假定系统工作波长精确等于零色散波长 2 0 3 0 亦忽略光源啁啾 C 0 则式中 S为色散斜率 由此可得输出脉冲脉宽为同样 利用规定 TB 4 并假定传输距离很长 D 0 则得极限比特率为 33 3 2 2窄谱光源脉冲传输时的展宽与极限比特率 1 系统工作波长远离零色散波长 2 0 3 0 其次忽略光源啁啾的影响 C 0 则展宽因子可近似为与宽谱光源比较发现 两种情况的主要差别在于 在应用窄谱光源时 0 色散导致的展宽主要决定于初始宽度 0 而当光源谱宽居支配地位时 色散导致的展宽与 0无关 在窄谱光源脉冲 光源均方根谱宽 1 0 也即V l 34 事实上 通过选择 0的最优值可使 最小 不难发现 的最小值在 D 2 L 2 1 2时出现 这时有 2 L 1 2 根据上节类似规定 可得极限比特率为上式与宽谱光源相比 主要差别在于B与L 1 2成比例 而不是与L 1成比例 35 2 系统精确工作于零色散波长 2 0 3 0 同时假定V 1 C l 则脉宽可近似为类似 亦可通过改变 0使 达到最小 不难发现 的最小值在 D 3 L 4 1 2时出现 这时有 3 2 1 2 3 L 4 1 3 36 在这种情况下色散的影响最小 利用4B 1 可得极限比特率为B 0 324 3 L 1 3与前相比 主要差别在于B与L 1 3成比例 由上讨论可得出重要的结论 采用窄谱线光源 工作于零色散波长 能大大提高光纤通信系统的性能 37 系统通信容量BL與带宽B 群速色散GVD之间的关系 38 3 啁啾超高斯光脉冲在零色散波长处的传输 上面两种情况都是讨论的高斯脉冲传输中产生的展宽 而且都是具有较宽的前后沿的非啁啾脉冲 但通常由直接调制半导体激光器发射的脉冲具有较陡的前后沿 其形状近似为超高斯脉冲 具有较宽的谱宽 而且均伴随有较丰富的啁啾频率分量 色散展宽对这类脉冲更为敏感下面讨论C 0的超高斯脉冲的传输展宽和极限比特率 39 对于超高斯啁啾脉冲m代表脉冲形状参数 m 1代表超高斯啁啾脉冲 随着m的增大 脉冲变为具有陡峭上升沿和下降沿的近似矩形脉冲 脉冲展宽因子表达式 式中 为伽玛函数 40 采用类似的方法 若求得的均方根脉宽不超过容许的展宽因子 就可以求得极限比特率B和最大BL积 图3 5展示了m 1和m 3的输入脉冲传输时 其BL积随啁啾参数C变化计算的结果 计算中取T0 125ps 2 20ps2 km 脉冲容许的展宽程度为输入脉宽的20 相应比特率为4GB s 41 图3 5色散限制啁啾高斯和超高斯脉冲传输的BL积随啁啾参数C的变化 42 由于超高斯脉冲在光纤中传输时 其展宽速度快于高斯脉冲 所以 其BL积必然低于高斯脉冲的BL值 值得注意的是 在负啁啾 C0 可知展宽因子将随 C 而增大 因而BL积将随 C 增大而快速减小 这是难以避免的 而直接调制半导体激光器的C参数一般为负值 为克服这种限制 只能采用低色散 2 的光纤和低啁啾成分的光源 如采用色散位移光纤和无啁啾激光器 43 3 2 3光纤与光纤系统的带宽 光纤带宽的概念源于时不变线性系统的普遍理论 如果将光纤作为线性系统处理 则其输入与输出功率间服从以下通用关系当不考虑光纤损耗时 对于Pin t t 的输入脉冲 式中 t 为 函数 则有Pout t 1 因此h t 称为线性系统的冲激响应 其傅氏变换给出了频率响应 并称为传递函数 44 2020 1 4 45 通常 H f 随频率f增加而下降 表明输入信号的高频分量被光纤压抑了 光纤带宽定义为传递函数降至其峰值的1 2频率点间的频率间隔 称为3dB光纤带宽或光带宽 记为f3dB 它满足关系 H f3dB H 0 1 2在光纤通信系统中 系统的带宽习惯上也用光接收机接收到的电功率来定义 即以电功率降低3dB的两个频率点间的间隔 因为电功率正比于光检测器输出电流或光功率的平方 所以3dB的光带宽相当于6dB的电带宽 46 分析光纤的传递函数一般不能将光纤作为线性系统处理 因此式 3 2 15 并不能完全成立 然而当光源谱宽 L远大于信号谱宽 0时 可近似将其看作线性系统 因此 可以单独地考察不同谱分量的传播 然后再将它们携带的功率线性相加以求得输出功率和传递函数 例如 对高斯脉冲输入时 可求得光纤的传递函数为 47 式中下面分别讨论两种情况的光纤带宽 48 1 工作波长远离零色散波长 3 0 2为有限值 则有f1 f2 传递函数近似为高斯形 可得光纤带宽为f3dB 2ln2 1 2f1 0 188 D L 1或写成f3dBD 0 188式中 D D L 可求得光纤带宽与比特率B间的关系B 1 33f3dB上式表明 光纤带宽是色散限制光波系统极限比特率的近似量度 49 2 工作在零色散波长 2 0 D 0 3 0 则可得利用式 3 2 7 上式可改写为B 0 574f3dB 50 利用上述结果来评估一下采用两种典型光纤的光波系统的传输能力或容量 系统采用1 55 m多模半导体激光器作为光源 谱宽典型值 1nm 由此可得 普通单模光纤 取D 18ps nm km 则有BL 100GHz km 色散位移光纤 取Js 0 05ps nm km 则有BL 32THz km 51 3 3光纤非线性影响下光信号的传输特性 本节讨论非线性效应对光信号传输的影响 光纤中低阶非线性效应光信号的自相位调制 SPM 和交叉相位调制 XPM 限制输入信号功率和传输距离 并将导致频谱展宽和频率啁啾 受激非弹性散射的影响参量过程光纤中高阶非线性效应非线性极化强度自陡峭延滞非线性响应 52 实际光波系统中 非线性效应的影响不可忽视 而且GVD和SPM的影响是同时存在的 特别是在长距离与多信道光波系统中 必须同时考虑这两种因素对信号传输的影响 这节分析光纤中非线性影响下光信号的传输特性 53 3 3 1光脉冲在非线性色散光波系统中传输的基本方程 分析光脉冲信号在非线性色散光波系统中的传输特性传统的基本思路 建立和求解描述介质中信号传输的波动方程 分析过程比较复杂 不采用我们的方法 先借助在GVD影响下缓变脉冲包络A z t 满足的传播方程 然后再对其进行修正 以计入光纤非线性效应产生的SPM的影响 54 这种修正是基于这样一种考虑 在石英光纤中 光强导致的折射率变化很小 通常小于10 6 非线性效应较弱 因此 在式缓变脉冲包络的左边加进一个非线性项 以计入SPM的影响 这样式缓变脉冲包络变为非线性色散光波系统中信号传输的基本方程 参数 2和 分别代表GVD效应和SPM效应 55 方程说明 适用性 能够阐明光波系统中的许多非线性效应 但是并不精确和普遍适用 方程的局限1 没有包含SRS和SBS那样的受激非弹性散射的影响 而实际光波系统中 当输入脉冲峰功超过其阈值时 SRS和SBS就会将泵浦 入射信号 能量传递给与泵浦脉冲一起传输 同向或反向 的斯托克斯脉冲 通过SRS或SBS增益及XPM产生相互作用 当两个或多个不同波长脉冲同时输入光纤时也会产生类似的作用 方程的改进1 光纤系统中多脉冲同时传输时 需对式 3 3 1 作适当改进 56 方程的局限2 当输入光脉冲的脉宽大于几皮秒 ps 时 式 3 3 1 能精确描述脉冲的传输演化规律 但是当输入脉冲宽度5THz 可与载频 0相比 推导式 3 1 7 时所作准单色慢变包络近似将失效 必须考虑除SPM外的高阶非线性效应 这时脉冲的高频分量将会将能量转移给低频分量 并在SRS增益作用下得到放大 结果在传输过程中 脉冲频谱向红光一侧移动 导致脉冲变形 这种现象称为自频移 它起因于延迟非线性响应 57 方程的改进2 考虑延迟非线性响应时 式 3 3 1 应予修正 方程的改进3 考虑光纤损耗 式 3 3 1 增加光纤损耗修正 采用下列普遍适用的方程描述光信号的传输 58 式中右边增加了三项第一项代表光纤损耗 为光纤损耗系数 第二项由非线性极化强度慢变部分的时变项引起 能导致脉冲前沿变陡 称为自陡峭 1 2 o 第三项起因于延滞非线性响应 与三阶电极化率 3 有关 2 2 TR TR对应于喇曼增益的斜率 TR 5fs 59 在大多数实际感兴趣的场合 可以忽略式 3 3 2 的高阶线性 3 与非线性项 1和 2 例如当工作波长偏离零色散波长和脉宽T0 0 1ps时 式 3 3 2 可简化为当给定初始输入脉冲和光纤参数 由上式即可求解光信号的传输演化规律 60 3 3 2光波系统中光脉冲信号的传输状态 一般光波系统中 损耗 群色散与非线性效应是影响信号传输特性的三个基本因素 光纤损耗 的影响比较简单 如令 2 0 0 则有因而A z A0exp z 2 脉冲包络幅值在传输过程中按指数衰减 61 本节主要讨论色散和非线性同时存在时脉冲信号的传输演化特点 首先引人以下参数 将式 3 3 3 写成归一化形式式中 T0为脉冲宽度 P0为峰值功率 LD为色散长度 LD T02 2 暂不考虑光纤损耗的影响 则式 3 3 3 可改写成以下形式 62 式中 sgn 2 根据 2的正负分别取 1和 l LNL为非线性长度 定义为LNL 1 P0根据初始输入脉冲宽度T0 峰值功率P0和群色散 2的不同 色散长度和非线性长度将随之而变 结果脉冲的传输演化情况亦将随之而变 LD和LNL的相对大小为研究光脉冲的传输状态提供了一个重要的判别依据 由此可以判别光波系统到底工作于什么状态 63 LD和LNL的相对大小存在四种情况 因而存在四种传输状态 现分别讨论如下 1 当T0很大 2 和 P0均很小时 色散和非线性影响均很弱 LD和LNL均远大于光纤长度 即LD L LNL L 因而脉冲传输时 色散和非线性效应均不起重要影响 这相当于无色散无非线性 即线性无色散系统 这时有 U z 0 U z U 0 脉冲传输时能保持初始形状不变 即无畸变传输 64 一般光波系统中 L 50 l00km 为达到无畸变传输 LD和LNL应大于等于500 1000km 由此可估计出T0和P0值 实际上 2 0 P0 0 因而不易实现无畸变传输 例如 某光纤典型参数为 1 55 m处 2 20ps2 km 20 w km 1 若取T0 l00ps P0 0 1mW 则LD 500km LNL 500km 对于L 500km的光纤系统 色散和非线性效应均可忽略 然而当T0减小 P0增大时 LD和LNL均变小 例如当T0 lps P0 1w时 LD和LNL仅约50m 对这样的光脉冲 无畸变传输距离只有几米 若需传输较长的距离 就必须考虑色散和非线性的影响 65 2 当改变T0 P0和 2 使LNL L 但LD L时 式 3 3 5 中最后一项与其余两项相比可以忽略 光脉冲的传输特性主要由群色散如支配 而非线性影响甚小 可以忽略 这种光波系统即3 2节讨论的线性色散系统 其LD LNL 1 一般的光波系统均为这种系统 例如当T0 lps P0 1w 2 20ps2 km时 就属于这种情况 66 3 当改变T0 P0和 2 使LD L LNL L时 式 3 3 5 中与色散相关的项可以忽略 在这种情况下 LD LNL 1 光波系统中光脉冲的传输特性主要由非线性效应支配 属弱色散或无色散非线性系统 例如当T0 l00ps P0 1w时就满足这种条件 但是当系统工作在零色散波长附近 2很小时 非线性可导致脉冲压缩 压缩后的脉冲具有陡峭的前后沿 即使满足LD LNL 1条件 很弱的色散的影响也将变得很重要 67 4 当改变T0 P0和 2 使色散和非线性影响强度相当 并共同作用于光脉冲时 其影响与色散和非线性单独作用时的影响将有本质不同 并将产生一种新的信号传输机制 称为光孤子传输 这种系统称为色散非线性系统或光孤子通信系统 当 20时 光脉冲演化为暗孤子传输 68 3 4非线性光波系统中的自相位调制和频率啁啾 近似处理 忽略色散的影响 2 0 非线性起支配作用时 光脉冲的传输特性 1 自相位调制 SPM 考虑到非线性效应与光脉冲强度直接相关 在讨论中将计人光纤损耗的影响 因而有 69 引入归一化参数则有 70 上式的解可写成U z T U 0 T exp i NL z T U 0 T 为z 0处的场幅 NL称为非线性相移 亦称自相位调制 SPM 由下式决定 NL z T U 0 T 2 Zeff LNL Zeff 1 exp z 可见 NL在时域的形状与光强相同 且随光强与距离增大而增大 参量Zeff为有效距离 71 由于光纤存在损耗 使其比实际光纤长度要短 但当 0时 Zeffr Z Nl的最大相移 出现在脉冲中心 即T 0处 因为U是归一化量 则 U 0 0 1 因而 max Zeff LNL P0Zeff可见非线性相移与信号功率P0成比例增大 输入信号功率越大 非线性效应越强 非线性长度越短 非线性相移越大 72 2 SPM产生的频率啁啾自相位调制 SPM 是由非线性引起的 它不仅随光强而变 而且随时间变化 这种瞬时变化相移将引起光脉冲的频谱展宽 导致在光脉冲的中心频率两侧出现不同的瞬时光频率 两侧瞬时频率与中心频率的差值可由下式求得 73 与由色散引起的频率啁啾类似 由SPM引起的 T 的时间依存关系亦称为频率啁啾 它亦随传输距离增大而增大 因此随着光脉冲沿光纤传输将不断产生新的频率分量 频谱将不断展宽 脉冲频谱的展宽程度还与脉冲形状有关 对于超高斯脉冲输入 其SPM产生的频率啁啾分量为 74 高斯脉冲 m 1 和超高斯脉冲 m 3 在Zeff LNL处的非线性相移 NL和频率啁啾 图3 6非线性产生的 NL和 实线一超高斯脉冲 虚线一高斯脉冲 75 图中显示SPM产生的频率啁啾的特点 前沿为负啁啾 红移 后沿为正啁啾 蓝移 在高斯脉冲的中心附近有一较宽的区域 啁啾是线性的 而且是正的 称为上啁啾 对有较陡前后沿的脉冲 啁啾显著增大 对超高斯脉冲 啁啾仅出现在脉冲前后沿附近

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论