LocalSearch.ppt_第1页
LocalSearch.ppt_第2页
LocalSearch.ppt_第3页
LocalSearch.ppt_第4页
LocalSearch.ppt_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LocalandStochasticSearch basedonRussGreiner snotes ADifferentApproach Sofar systematicexploration Explorefullsearchspace possibly usingprincipledpruning A Bestsuchalgorithms IDA canhandle10100states 500binary valuedvariables ballparkfiguresonly but somereal worldproblemhave10 000to100 000variables1030 000statesWeneedacompletelydifferentapproach LocalSearchMethodsorIterativeImprovementMethods LocalSearchMethods ApplicablewhenseekingGoalState don tcarehowtogetthere E g N queens mapcoloring VLSIlayout planning scheduling TSP time tabling Many most realOperationsResearchproblemsaresolvedusinglocalsearch E g Deltaairlines RandomSearch Select random initialstate initialguessatsolution MakelocalmodificationtoimprovecurrentstateRepeatStep2untilgoalstatefound oroutoftime Requirements generatearandom probably not optimal guessevaluatequalityofguessmovetootherstates well definedneighborhoodfunction anddotheseoperationsquickly Example 4Queen States 4queensin4columns 256states Operators movequeenincolumnGoaltest noattacksEvaluation h n numberofattacks Example GraphColoring StartwithrandomcoloringofnodesChangecolorofonenodestoreduce ofconRepeat2 Hill Climbing IfContinuous But ProblemswithHillClimbing ProblemswithHillClimbing Foothills LocalOptimal Noneighborisbetter butnotatglobaloptimum Maze mayhavetomoveAWAYfromgoaltofind best solution Plateaus Allneighborslookthesame 8 puzzle perhapsnoactionwillchange oftilesoutofplace Ridge goinguponlyinanarrowdirection SupposenochangegoingSouth orgoingEast butbigwingoingSEIgnoranceofthepeak AmIdone Issues TheGoalistofindGLOBALoptimum HowtoavoidLOCALoptima Howlongtoplateauwalk Whentostop Climbdownhill When LocalSearchExample SAT Manyreal worldproblemscanbetranslatedintopropositionallogic AvBvC BvCvD Av CvD solvedbyfindingtruthassignmenttovariables A B C thatsatisfiestheformulaApplicationsplanningandschedulingcircuitdiagnosisandsynthesisdeductivereasoningsoftwaretesting SatisfiabilityTesting Best knownsystematicmethod Davis PutnamProcedure 1960 Backtrackingdepth firstsearch DFS throughspaceoftruthassignments withunit propagation GreedyLocalSearch GSAT GSAT 1 Guessrandomtruthassignment2 Flipvalueassignedtothevariablethatyieldsthegreatest ofsatisfiedclauses Note Flipevenifnoimprovement 3 Repeatuntilallclausessatisfied orhaveperformed enough flips4 Ifnosat assignfound repeatentireprocess startingfromadifferentinitialrandomassignment Systematicvs Stochastic Systematicsearch DPsystematicallychecksallpossibleassignments Candetermineiftheformulaisunsatisfiable Stochasticsearch Oncewefindit we redone Guidedrandomsearchapproach Can tdetermineunsatisfiability GSATvs DPonHardRandomInstances WhatMakesaSATProblemHard Supposewehavenvariablestowritemclauseswithkvariableseach Wenegatetheresultingvariablesrandomly flipanunbiasedcoin Whatisthenumberofpossiblesentencesintermsofn m andk Whatiftherearemanyvariablesandonlyasmallernumberofclauses Whatiftherearemanyclausesandonlyasmallernumberofvariables PhaseTransition For3 SATm n4 3 overconstrained nearlyallsentencesunsat m n 4 26 criticallyconstrained needtosearch PhaseTransition Under constrainedproblemsareeasy justguessanassignment Over constrainedproblemsareeasy justsay unsatisfiable ofteneasytoverifyusingDavis Putnam Atam nratioofaround4 26 thereisaphasetransitionbetweenthesetwodifferenttypesofeasyproblems Thistransitionsharpensasnincreases Forlargen hardproblemsareextremelyrare insomesense ImprovementstoBasicLocalSearch Issue Howtomovemorequicklytosuccessivelybetterplateaus Avoid gettingstuck localminima Idea Introduceuphillmoves noise toescapefromplateaus localminimaNoisestrategies 1 SimulatedAnnealingKirkpatricketal 1982 Metropolisetal 19532 MixedRandomWalkSelmanandKautz1993 SimulatedAnnealing PickarandomvariableIfflipimprovesassignment doit Elseflipwithprobabilityp e T goingthewrongway ofadditionalclausesbecomingunsatisfiedT temperature Highertemperature greaterchanceofwrong waymoveSlowlydecreaseTfromhightemperaturetonear0 Q WhatispasTtendstoinfinity asTtendsto0 For 0 SimulatedAnnealingAlgorithm NotesonSA Noisemodelbasedonstatisticalmechanics introducedasanaloguetophysicalprocessofgrowingcrystalsKirkpatricketal 1982 Metropolisetal 1953Convergence 1 W exponentialschedule willconvergetoglobaloptimum2 Nomore preciseconvergencerate RecentworkonrapidlymixingMarkovchains Keyaspect upwards sidewaysmovesExpensive but ifhaveenoughtime canbebestHundredsofpapers year Manyapplications VLSIlayout factoryscheduling PureWalkSat PureWalkSat formula GuessinitialassignmentWhileunsatisfieddoSelectunsatisfiedclausec Xiv Xjv XkSelectvariablevinunsatisfiedclausecFlipv Example MixingRandomWalkwithGreedyLocalSearch Usualissues TerminationconditionsMultiplerestartsValueofpdeterminedempirically byfindingbestsettingforproblemclass Findingthebestvalueofp WalkSat p W probp flipvarinunsatisfiedclauseW prob1 p makeagreedyfliptominimize ofunsatisfiedclausesQ Whatvalueforp Let Q p c bequalityofusingWalkSat p onproblemc Q p c Timetoreturnanswer or 1ifWalkSat p return correct answerwithin5minutesand0otherwise or perhapssomecombinationofboth Then findpthatmaximizetheaverageperformanceofWalkSat p onasetofchallengeproblems ExperimentalResults HardRandom3CNF TimeinsecondsEffectiveness prob thatrandominitialassignmentleadstoasolution Completemethods suchasDP upto400variablesMixedWalkbetterthanSimulatedAnnealingbetterthanBasicGSATbetterthanDavis Putnam OvercomingLocalOptimumandPlateau RandomrestartsSimulatedannealingMixed inrandomwalkTabusearch preventrepeatedstates Others Geneticalgorithms programming OtherTechniques randomrestarts restartatnewrandomstateafterpre defined oflocalsteps DonebyGSAT tabu preventreturningquicklytosamestate Implement Keepfixedlengthqueue tabulist Addmostrecentsteptoqueue dropoldeststep Nevermakestepthat soncurrenttabulist Example withouttabu flipv1 v2 v4 v2 v10 v11 v1 v10 v3 withtabu length5 possiblesequence flipv1 v2 v4 v10 v11 v1 v3 Tabuverypowerful competitivew simulatedannealingorrandomwalk dependingonthedomain GeneticAlgorithms AclassofprobabilisticoptimizationalgorithmsAgeneticalgorithmmaintainsapopulationofcandidatesolutionsfortheproblemathand andmakesitevolvebyiterativelyapplyingasetofstochasticoperatorsInspiredbythebiologicalevolutionprocessUsesconceptsof NaturalSelection and GeneticInheritance Darwin1859 OriginallydevelopedbyJohnHolland 1975 Examples Recipe Tofindoptimalquantityofthreemajoringredients sugar wine sesameoil denotingounces Useanalphabetof1 9denotingounces Solutionsmightbe1 1 1 2 1 4 3 3 1 TheAlgorithm Randomlygenerateaninitialpopulation Selectparentsand reproduce thenextgenerationEvaluatethefitnessofthenewgenerationReplacetheoldgenerationwiththenewgenerationRepeatstep2though4tilliterationN StochasticOperators Cross overdecomposestwodistinctsolutionsandthenrandomlymixestheirpartstoformnovelsolutionsMutationrandomlyperturbsacandidatesolution 1010111 1100011 Parent1 Parent2 1010011 1100110 Child1 Child2 Mutation GeneticAlgorithmOperatorsMutationandCrossover Examples Mutation Therecipeexample 1 2 3maybechangedto1 3 3or3 2 3 ParameterstoadjustHowoften Howmanydigitschange Howbig Mo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论