域的基本概念与性质.ppt_第1页
域的基本概念与性质.ppt_第2页
域的基本概念与性质.ppt_第3页
域的基本概念与性质.ppt_第4页
域的基本概念与性质.ppt_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8 3域的基本概念与性质 定义8 3 1设 F x 为一个交换环 若 F x 是群则称 F x 为一个域 其中F F 0 域也可以定义为 每个非零元都有逆元的整环 例8 3 1全体实数集合R 有理数集合Q以及复数集合C 在通常的加法和乘法运算下都构成域 例8 3 2试证 R2 是一个域 其中运算 和 的定义如下 a b c d a c b d a b c d ac bd ad bc 由 R2 C x 和 C x 是域即可知 设f为从环 R x 到 R x 的同态 但f不是同构 则R是整环并不能确保R 也是整环 例如 f Z Zn m m n是整数环从 Z x 到同余类环 Zn n xn 的同态 Z是整环 而当n不是素数时 Zn不是整环 例8 3 3证明 Zp p xp 是域当且仅当p是素数 证 若 Zp p xp 是域 则 Zp p xp 是整环 于是其特征p是素数 若p是素数 m p Zp 由p与m互素 故存在s t Z 使得sp tm 1于是 sp p p tm p 1 p即 t pxp m p 1 p因此 m p的逆元是 t p 定理8 3 1有限整环 R x 一定是域 证 只需证明非零元都有逆元即可 设r0 R r0 0考虑映射f R R r r0r若r0r1 r0r2 则由整环无零因子知r1 r2故f是单射 又R为有限环 不妨设 R n 则单射f将R中n个不同元素映到R中n个不同元素 故f是满射 于是存在r1 R 使f r1 1 即r0r1 1 故r0有逆元r1 定理8 3 2整环是域的充要条件是它不含真理想 证 充分性设整环 R x 不含真理想 只需证明非零元r0都有逆元 设由r0生成的R的主理想为 r0 因于r0 r0 因此 r0 0 于是 r0 R 而整环R的 r0 r0r r R 故存在r1 R 使r0r1 1 故r0有逆元r1 必要性设I为域 R x 的理想 I 0 则存在非零元r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论