




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数综合题一解答题(共30小题)1(2014黔南州)如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3)(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,PAC的面积最大?并求出此时P点的坐标和PAC的最大面积2(2014本溪)如图,直线y=x4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当MBA+CBO=45时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由解:(1)直线解析式y=x4,令x=0,得y=4;令y=0,得x=4A(4,0)、B(0,4)点A、B在抛物线y=x2+bx+c上,解得,抛物线解析式为:y=x2x4令y=x2x4=0,解得:x=3或x=4,C(3,0)(2)MBA+CBO=45,设M(x,y),当BMBC时,如答图21所示ABO=45,MBA+CBO=45,故点M满足条件过点M1作M1Ey轴于点E,则M1E=x,OE=y,BE=4+ytanM1BE=tanBCO=,直线BM1的解析式为:y=x4联立y=x4与y=x2x4得: x4=x2x4,解得:x1=0,x2=,y1=4,y2=,M1(,);当BM与BC关于y轴对称时,如答图22所示ABO=MBA+MBO=45,MBO=CBO,MBA+CBO=45,故点M满足条件过点M2作M2Ey轴于点E,则M2E=x,OE=y,BE=4+ytanM2BE=tanCBO=,直线BM2的解析式为:y=x4联立y=x4与y=x2x4得: x4=x2x4,解得:x1=0,x2=5,y1=4,y2=8/3,M2(5,8/3)综上所述,满足条件的点M的坐标为:(,)或(5,8/3)(3)设BCO=,则tan=,sin=,cos=假设存在满足条件的点D,设菱形的对角线交于点E,设运动时间为t若以CQ为菱形对角线,如答图31此时BQ=t,菱形边长=tCE=CQ=(5t)在RtPCE中,cos=,解得t=CQ=5t=过点Q作QFx轴于点F,则QF=CQsin=,CF=CQcos=,OF=3CF=Q(,)点D1与点Q横坐标相差t个单位,D1(,);若以PQ为菱形对角线,如答图32此时BQ=t,菱形边长=tBQ=CQ=t,t=,点Q为BC中点,Q(,2)点D2与点Q横坐标相差t个单位,D2(1,2);若以CP为菱形对角线,如答图33此时BQ=t,菱形边长=5t在RtCEQ中,cos=,解得t=OE=3CE=3t=,D3E=QE=CQsin=(5)=D3(,)综上所述,存在满足条件的点D,点D坐标为:(,)、(1,2)或(,)本题是二次函数压轴题,着重考查了分类讨论的数学思想,考查了二次函数的图象与性质、解直角三角形(或相似)、菱形、一次函数、解方程等知识点,难度较大第(3)问为存在型与运动型的综合问题,涉及两个动点,注意按照菱形对角线进行分类讨论,做到条理清晰、不重不漏3(2014桂林)如图,已知抛物线y=ax2+bx+4与x轴交于A(2,0)、B两点,与y轴交于C点,其对称轴为直线x=1(1)直接写出抛物线的解析式:_;(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A、C,当C落在抛物线上时,求A、C的坐标;(3)除(2)中的点A、C外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形?若存在,求出E、F的坐标;若不存在,请说明理由(1)y =-x2+x+4;(2)抛物线的解析式:y =-x2+x+4,当x=0时,y=4,可得点C(0,4) 抛物线的对称轴为x=1点C关于x=1的对称点C的坐标为(2,4)点C向右平移了2个单位长度则点A向右平移后的点A的坐标为(0,0)所以点A,C的坐标分别分(0,0),(2,4)。(3) 存在,共有两种情况:(一):如图,四边形ACEF是平行四边形,过点F作FDx轴AF=CE,AEC=EAF,ADF=AOC=90DAF=CEOADFEOCDF=CO=4,AD=EO点F的纵坐标为-4,点F在抛物线y =-x2+x+4的图像上即-x2+x+4=-4,解得x=1点F(-+1,-4)DO=-1AO=2AD=EO=DO-AO=-3点E(-+3,0)所以点E的坐标为(-+3,0),点F的坐标为(-+1,-4)(二)如图,四边形ACEF是平行四边形过点F作FHx轴AC=EF,CAO=FEH,AOC=FHE=90AOCEHFHF=CO=4,AO=EH得点F的纵坐标是-4点F在抛物线y =-x2+x+4的图像上即-a2+a+4=-4,解得x=1则点F的坐标为(1+,-4)EH=1+,EH=AO=2OE=3+点E的坐标为(3+,0)(1+,-4)所以点E的坐标为(3+,0),点F的坐标为(1+,-4)4(2014白银)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x23向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3(1)求点M、A、B坐标;(2)联结AB、AM、BM,求ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为,当=ABM时,求P点坐标5(2014贺州)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上直线y=1与y轴交于点H(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=1交于点M,求证:FM平分OFP;(3)当FPM是等边三角形时,求P点的坐标6(2014镇江)如图1,在平面直角坐标系xOy中,点M为抛物线y=x2+2nxn2+2n的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4(1)求抛物线的函数关系式,并写出点P的坐标;(2)小丽发现:将抛物线y=x2+2nxn2+2n绕着点P旋转180,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),=写出C点的坐标:C(_,_)(坐标用含有t的代数式表示);若点C在题(2)中旋转后的新抛物线上,求t的值7(2014菏泽)在平面直角坐标系xOy中,已知抛物线y=x22mx+m29(1)求证:无论m为何值,该抛物线与x轴总有两个交点;(2)该抛物线与x轴交于A,B两点,点A在点B的左侧,且OAOB,与y轴的交点坐标为(0,5),求此抛物线的解析式;(3)在(2)的条件下,抛物线的对称轴与x轴的交点为N,若点M是线段AN上的任意一点,过点M作直线MCx轴,交抛物线于点C,记点C关于抛物线对称轴的对称点为D,点P是线段MC上一点,且满足MP=MC,连结CD,PD,作PEPD交x轴于点E,问是否存在这样的点E,使得PE=PD?若存在,求出点E的坐标;若不存在,请说明理由8(2014绥化)如图,抛物线y=x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3(1)求tanDBC的值;(2)点P为抛物线上一点,且DBP=45,求点P的坐标9(2014贵阳)如图,经过点A(0,6)的抛物线y=x2+bx+c与x轴相交于B(2,0),C两点(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在ABC内,求m的取值范围;(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围10(2014哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=x+4交于另一点B,且点B的横坐标为1(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PMOB交第一象限内的抛物线于点M,过点M作MCx轴于点C,交AB于点N,过点P作PFMC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当SACN=SPMN时,连接ON,点Q在线段BP上,过点Q作QRMN交ON于点R,连接MQ、BR,当MQRBRN=45时,求点R的坐标11(2014娄底)如图,抛物线y=x2+mx+(m1)与x轴交于点A(x1,0),B(x2,0),x1x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使POC=PCO?若能,请求出点P的坐标;若不能,请说明理由12(2014常州)在平面直角坐标系xOy中,二次函数y=x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y轴交于点C过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=x2+x+2的图象相交于点D,E(1)写出点A,点B的坐标;(2)若m0,以DE为直径作Q,当Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由13(2014咸宁)如图1,P(m,n)是抛物线y=1上任意一点,l是过点(0,2)且与x轴平行的直线,过点P作直线PHl,垂足为H【探究】(1)填空:当m=0时,OP=_,PH=_;当m=4时,OP=_,PH=_;【证明】(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想【应用】(3)如图2,已知线段AB=6,端点A,B在抛物线y=1上滑动,求A,B两点到直线l的距离之和的最小值14(2014重庆)如图,抛物线y=x22x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQAB交抛物线于点Q,过点Q作QNx轴于点N若点P在点Q左边,当矩形PMNQ的周长最大时,求AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方)若FG=2DQ,求点F的坐标15(2014钦州)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PEx轴交抛物线于点P,交BC于点G,交BD于点H(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与DEH相似?若存在,求出此时m的值;若不存在,请说明理由16(2014仙桃)已知抛物线经过A(2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q设点P的运动时间为t秒(1)求抛物线的解析式;(2)当BQ=AP时,求t的值;(3)随着点P的运动,抛物线上是否存在一点M,使MPQ为等边三角形?若存在,请直接写t的值及相应点M的坐标;若不存在,请说明理由17(2014威海)如图,已知抛物线y=ax2+bx+c(a0)经过A(1,0),B(4,0),C(0,2)三点(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出BDA的度数18(2014昆明)如图,在平面直角坐标系中,抛物线y=ax2+bx3(a0)与x轴交于点A(2,0)、B(4,0)两点,与y轴交于点C(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当PBQ存在时,求运动多少秒使PBQ的面积最大,最大面积是多少?(3)当PBQ的面积最大时,在BC下方的抛物线上存在点K,使SCBK:SPBQ=5:2,求K点坐标19(2014连云港)已知二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),交y轴于点C,直线l过点C,且交抛物线于另一点E(点E不与点A、B重合)(1)求此二次函数关系式;(2)若直线l1经过抛物线顶点D,交x轴于点F,且l1l,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由(3)若过点A作AGx轴,交直线l于点G,连接OG、BE,试证明OGBE20(2014南通)如图,抛物线y=x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,DAO+DPO=,当tan=4时,求点P的坐标21(2014武汉)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=时,在直线AB下方的抛物线上求点P,使ABP的面积等于5;(3)若在抛物线上存在定点D使ADB=90,求点D到直线AB的最大距离22(2014衡阳)二次函数y=ax2+bx+c(a0)的图象与x轴的交点为A(3,0)、B(1,0)两点,与y轴交于点C(0,3m)(其中m0),顶点为D(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图,当m=2时,点P为第三象限内的抛物线上的一个动点,设APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图,当m取何值时,以A、D、C为顶点的三角形与BOC相似?23(2014永州)如图,抛物线y=ax2+bx+c(a0)与x轴交于A(1,0),B(4,0)两点,与y轴交于点C(0,2),点M(m,n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上,过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F(1)求抛物线的解析式,并写出其顶点坐标;(2)当SMFQ:SMEB=1:3时,求点M的坐标24(2014烟台)如图,在平面直角坐标系中,RtABC的顶点A,C分别在y轴,x轴上,ACB=90,OA=,抛物线y=ax2axa经过点B(2,),与y轴交于点D(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明EDAC的理由25(2014重庆)如图,已知抛物线y=x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PMy轴,且PM交抛物线于点M,交x轴于点N,当BCM的面积最大时,求BPN的周长;(3)在(2)的条件下,当BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得CNQ为直角三角形,求点Q的坐标26(2014襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4)点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B连接EC,AC点P,Q为动点,设运动时间为t秒(1)填空:点A坐标为_;抛物线的解析式为_(2)在图中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 端午节比赛课件
- 端午知识图片课件下载
- 地下恋情协议书范本大全
- 聘请临时保洁协议书范本
- 债券项目合作协议书范本
- 旅行社签单协议书范本
- 空间规划管理课件
- 空气环境与健康课件
- 二零二五年度高品质木板原材采购与销售合作协议
- 2025年度智能房屋买卖合同终止范本
- “挑战杯”大学生创业计划大赛-作品模板
- (新版)拖拉机驾驶证科目一知识考试题库500题(含答案)
- 抗磷脂抗体致病机制中的免疫细胞调控
- 2024电工电子产品环境参数测量方法 第4部分:凝露
- DL-T-5161.5-2018电气装置安装工程质量检验及评定规程第5部分:电缆线路施工质量检验
- DZ∕T 0219-2006 滑坡防治工程设计与施工技术规范(正式版)
- 《电力行业企业培训师能力标准与评价规范》
- 贾宝玉人物形象悲剧意蕴研究的开题报告
- 银行厅堂微沙龙培训课件
- 2024年济南历下城市发展集团有限公司招聘笔试参考题库含答案解析
- 2022年中考英语-六选五-选词填空-真题训练含详解
评论
0/150
提交评论