(试题 试卷 真题)专题38 相似三角形存在【学生版】_第1页
(试题 试卷 真题)专题38 相似三角形存在【学生版】_第2页
(试题 试卷 真题)专题38 相似三角形存在【学生版】_第3页
(试题 试卷 真题)专题38 相似三角形存在【学生版】_第4页
(试题 试卷 真题)专题38 相似三角形存在【学生版】_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题38 相似三角形存在【母题来源】2013年云南红河第23题(9分)【母题原题】如图,抛物线y=x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E。(1)求点A、B、C的坐标和直线BC的解析式;(2)求ODE面积的最大值及相应的点E的坐标;(3)是否存在以点P、O、D为顶点的三角形与OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由。则,解得。直线BC的解析式为y=2x+4。 综上所述,满足条件的点P有两个:P1,P2。【命题意图】本题是二次函数压轴题,考查了二次函数的图象与性质、待定系数法、二次函数的最值、相似三角形、解方程等知识点,难度不大。第(3)问是存在型问题,可能存在两种符合条件的情况,需要分类讨论,避免漏解。【方法技巧】(1)在抛物线解析式y=x2+4中,令y=0,解方程可求得点A、点B的坐标;令x=0,可求得顶点C的坐标已知点B、C的坐标,利用待定系数法求出直线BC的解析式。1.【2013年内蒙古包头12分】已知抛物线的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C(1)求点A、B、C、D的坐标;(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;(3)取点E(,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中点点G是否在直线l上,请说明理由;在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由2.【2013年福建南平14分】如图,已知点A(0,4),B(2,0)(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(xm)2+n与线段OA交于点C求线段AC的长;(用含m的式子表示)是否存在某一时刻,使得ACM与AMO相似?若存在,求出此时m的值3.【2013年湖北荆门10分】如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作O,过点P作O的切线,交AD于点F,切点为E(1)求证:OFBE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使EFOEHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由4.【2013年山东日照14分】已知,如图(a),抛物线经过点A(x1,0),B(x2,0),C(0,2),其顶点为D.以AB为直径的M交y轴于点E、F,过点E作M的切线交x轴于点N。ONE=30,。(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得ABP与ADB相似?若存在,求出P点的坐标;若不存在,说明理由;(3)如图(b),点Q为弧BF上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AHAQ是否为定值?若是,请求出这个定值;若不是,请说明理由。5.【2013年四川凉山12分】如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论