


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用导数求切线方程的四种类型类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数,并代入点斜式方程即可方法:例1曲线在点处的切线方程为()解:由则在点处斜率,故所求的切线方程为,即,因而选类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决方法:例2与直线的平行的抛物线的切线方程是() 解:设为切点,则切点的斜率为由此得到切点故切线方程为,即,故选评注:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为,代入,得,又因为,得,故选类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法例3 求过曲线上的点的切线方程解:设想为切点,则切线的斜率为切线方程为又知切线过点,把它代入上述方程,得解得,或故所求切线方程为,或,即,或评注:可以发现直线并不以为切点,实际上是经过了点且以为切点的直线这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解例4求过点且与曲线相切的直线方程解:设为切点,则切线的斜率为切线方程为,即又已知切线过点,把它代入上述方程,得解得,即评注:点实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性变式已知函数,过点作曲线的切线,求此切线方程解:曲线方程为,点不在曲线上设切点为,则点的坐标满足因,故切线的方程为点在切线上,则有化简得,解得所以,切点为,切线方程为评注:此类题的解题思路是,先判断点a是否在曲线上,若点a在曲线上,化为类型一或类型三;若点a不在曲线上,应先设出切点并求出切点2004年江苏第二次模拟试卷(常州卷)卷11:过点p作曲线y=x3的两条切线l1与l2,设l1,l2的夹角为,则tan= ( )解:由y=x3得y/=3x2设q(x0,x03)为切点,则在q点处的切线的方程为l:yx=3x02(xx)pl,1x=3x02(1x) (1x)(2x+1)=0 x=1或x= k= yx=1=3 k= y=tan=(200
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年传染病及突发公共卫生事件防治知识培训试题(附答案)
- 学校值班管理制度
- 2025年医学检验(士)过关检测试卷附参考答案详解【完整版】
- 2025计算机三级预测复习(轻巧夺冠)附答案详解
- 2025邮政行业职业技能鉴定练习题及参考答案详解(A卷)
- 车站安全员工培训考及答案
- 安全员培训班考及答案
- 2025酒、饮料及精制茶制造人员考试彩蛋押题含答案详解【完整版】
- 难点解析-人教版8年级数学下册《一次函数》专项训练试卷(详解版)
- 2024年临床执业医师每日一练试卷带答案详解(完整版)
- 软骨分化关键分子机制-洞察及研究
- (完整版)人教八年级下册期末物理测试真题经典及解析
- 储能项目竣工验收与交付方案
- 2025秋人教版(2024)二年级上册数学教学计划
- 桥梁河床断面测量课件
- 中药质量检测技术
- 工程开工方案模板(3篇)
- 2025年部编版新教材语文八年级上册教学计划(含进度表)
- 普外科肛肠科科室介绍
- 事业单位工勤人员技师考试职业道德复习试题及答案
- 投标技能提升培训课件
评论
0/150
提交评论