已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量的坐标表示 目标 把平面内的任意向量用一有序实数对 坐标 表示 复习 1 平面向量基本定理的内容是什么 2 什么是平面向量的基底 平面向量的基本定理 向量的基底 思考1 思考 如图 在直角坐标系中 已知A 1 0 B 0 1 C 3 4 D 5 7 设 填空 1 2 若用来表示 则 1 1 5 3 5 4 7 3 向量能否由表示出来 探索1 以O为起点 P为终点的向量能否用坐标表示 如何表示 向量的坐标表示 在平面直角坐标系内 起点不在坐标原点O的向量如何用坐标来表示 探索2 A o x y 可通过向量的平移 将向量的起点移到坐标的原点O处 解决方案 O x y A 平面向量的坐标表示 如图 是分别与x轴 y轴方向相同的单位向量 若以为基底 则 其中 x叫做在x轴上的坐标 y叫做在y轴上的坐标 式叫做向量的坐标表示 若a以O为起点 两者相同 思考 3 两个向量相等的条件 利用坐标如何表示 2020 1 7 14 变形 如图 分别用基底 表示向量 并求出它们的坐标 A A1 A2 解 如图可知 同理 思考 已知你能得出的坐标吗 平面向量的坐标运算 两个向量和 差 的坐标分别等于这两个向量相应坐标的和 差 实数与向量的积的坐标等于用这个实数乘原来向量的坐标 探究3 已知a x1 y1 b x2 y2 则a b x1 x2 y1 y2 向量的加法 a b 已知a x1 y1 b x2 y2 则a b x1 x2 y1 y2 已知a x y 和实数 则 a x y 向量的减法 同理可得数乘向量的坐标运算 向量的坐标运算法则 练习 已知求的坐标 例2 如图 已知求的坐标 x y O B A 解 一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标 这是一个重要结论 例3 如图 已知的三个顶点A B C的坐标分别是 2 1 1 3 3 4 试求顶点D的坐标 解法 设点D的坐标为 x y 解得x 2 y 2 所以顶点D的坐标为 2 2 例3 如图 已知的三个顶点A B C的坐标分别是 2 1 1 3 3 4 试求顶点D的坐标 解法2 由平行四边形法则可得 而 所以顶点D的坐标为 2 2 变形 如图 已知平行四边形的三个顶点的坐标分别是 2 1 1 3 3 4 试求第四个顶点的坐标 课堂小结 2加 减法法则 a b x2 y2 x1 y1 x2 x1 y2 y1 3实数与向量积的运算法则 a xi yj xi yj 4向量坐标 若A x1 y1 B x2 y2 1向量坐标定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东广州银行风险条线专题招聘备考题库含答案详解(完整版)
- 2025重庆垫江县永安镇委员会公开选拔本土人才3人备考题库及答案详解(历年真题)
- 2025克拉玛依市公安机关招聘警务辅助人员备考题库(169人)及答案详解参考
- 2025年辽阳市公安局招聘警务辅助人员体能测试备考题库含答案详解(培优)
- 抗震宜居农房设计标准
- 2025四川宜宾市叙州区招聘社区专职工作者25人备考题库及参考答案详解
- 2026年陕西省选调生招录备考题库(面向清华大学)及答案详解(有一套)
- 2025海南琼海市社区专职网格员招聘为社区专职人员50人备考题库(1号)含答案详解(培优a卷)
- 2025广州银行人才招聘6人备考题库及1套完整答案详解
- 2025中国民生银行南宁分行招聘2人备考题库及答案详解(典优)
- 山东省济南市2025届高三下学期5月高考针对性训练(三模)英语试卷(图片版含音频)
- 数独基础课程讲座
- 智能机器人创客基本训练知到课后答案智慧树章节测试答案2025年春仲恺农业工程学院
- 2024年煤矿安全规程
- 湖北省武汉市2023-2024学年九年级上学期元调考试物理试题
- 《粉末冶金成型教程》课件
- 祁连山地区多民族文化的交融共生研究
- PM设备预防维修保养管理制度
- 肾癌护理常规
- 2024北京初三一模语文汇编:议论文阅读
- 社会体育管理的内容
评论
0/150
提交评论