




免费预览已结束,剩余10页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点06二次函数与幂函数(1)了解幂函数的概念.(2)结合函数的图象,了解它们的变化情况.一、二次函数1二次函数的概念形如的函数叫做二次函数.2表示形式(1)一般式:f(x)=ax2bxc(a0).(2)顶点式:f(x)=a(xh)2k(a0),其中(h,k)为抛物线的顶点坐标.学/(3)两根式:f(x)=a(xx1)(xx2)(a0),其中x1,x2是抛物线与x轴交点的横坐标.3二次函数的图象与性质函数解析式图象(抛物线)定义域r值域对称性函数图象关于直线对称顶点坐标奇偶性当b=0时是偶函数,当b0时是非奇非偶函数单调性在上是减函数;在上是增函数.在上是增函数;在上是减函数.最值当时,当时,4常用结论(1)函数f(x)=ax2bxc(a0)的图象与x轴交点的横坐标是方程ax2bxc=0的实根.(2)若x1,x2为f(x)=0的实根,则f(x)在x轴上截得的线段长应为|x1x2|=.(3)当且()时,恒有f(x)0();当且()时,恒有f(x)0时,图象过原点,在第一象限的图象上升;当101cbbabcccabdbca【答案】a【名师点睛】同底数的两个数比较大小,考虑用指数函数的单调性;同指数的两个数比较大小,考虑用幂函数的单调性,有时需要取中间量.3设,则之间的关系是abcd考向三二次函数的图象及性质的应用高考对二次函数图象与性质进行单独考查的频率较低,常与一元二次方程、一元二次不等式等知识交汇命题,考查二次函数图象与性质的应用,以选择题、填空题的形式呈现,有时也出现在解答题中,解题时要准确运用二次函数的图象与性质,掌握数形结合的思想方法.常见类型及解题策略:1图象识别问题辨析二次函数的图象应从开口方向、对称轴、顶点坐标以及图象与坐标轴的交点等方面着手讨论或逐项排除2二次函数最值问题的类型及处理思路(1)类型:a.对称轴、区间都是给定的;b.对称轴动、区间固定;c.对称轴定、区间变动(2)解决这类问题的思路:抓住“三点一轴”数形结合,三点是指区间的两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成3解决一元二次方程根的分布问题的方法常借助于二次函数的图象数形结合来解,一般从:a.开口方向;b.对称轴位置;c.判别式;d.端点函数值符号四个方面分析4求解与二次函数有关的不等式恒成立问题往往先对已知条件进行化简,转化为下面两种情况:(1)ax2bxc0,a0恒成立的充要条件是.(2)ax2bxca在区间d上恒成立,此时就等价于在区间d上f(x)mina,接下来求出函数f(x)的最小值;若不等式f(x)b在区间d上恒成立,则等价于在区间d上f(x)maxcbababcdcdcabdabdc6如果函数对任意的实数x,都有,那么abcd7若,则下列各式中一定正确的是abcd8当时,函数在时取得最大值,则实数a的取值范围是abcd9若,则满足的的取值范围是_10若,且,则的最小值为_1(2017年高考浙江卷)若函数f(x)=x2+ ax+b在区间上的最大值是m,最小值是m,则m ma与a有关,且与b有关b与a有关,但与b无关c与a无关,且与b无关d与a无关,但与b有关2(2016年高考新课标iii卷)已知,则abcd3(2016年高考浙江卷)已知函数f(x)=x2+bx,则“bbcd.故选b.6【答案】d 【解析】由题意,函数对任意的实数x,都有,则说明二次函数的对称轴为,开口向上,则,则,故选d7【答案】a8【答案】d 【解析】当时,在时取得最小值,不符合题意;当时,函数的对称轴为,若,要使在时取得最大值,则,解得;若,要使在时取得最大值,则,解得,与矛盾,舍去综上,实数a的取值范围是故选d9【答案】【解析】根据幂函数的性质,由于,所以当时,当时,因此的解集为.10【答案】【解析】令,由,可得当时,取得最小值直通高考1【答案】b【解析】因为最值在中取,所以最值之差一定与无关,选b【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值2【答案】a【解析】因为,又函数在上是增函数,所以,即,故选a【技巧点拨】比较指数的大小常常根据三个数的结构,联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及对数,则联系对数的单调性来解决3【答案】a【解析】由题意知,最小值为.令,则,当时,的最小值为,所以“”能推出“的最小值与的最小值相等”;当时,的最小值为0,的最小值也为0,所以“的最小值与的最小值相等”不能推出“”故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚礼策划与婚礼现场婚礼车队租赁合同
- 第12课 新时期的理论成果说课稿-2025-2026学年高中历史北师大版2010必修3-北师大版2010
- 安全举报培训心得课件
- 民政局离婚案件办理及后续法律跟踪服务合同
- 加拿大团聚担保合同范本
- 住房公积金按揭贷款支持新能源产业发展协议
- 名校教授特聘合同书-学术研究与教学服务
- 农业抵押贷款合同范本协议书
- 个性化离婚协议范本兼顾双方利益与子女成长
- 2025建筑材料供应承包合同
- DB32/T 3691-2019 成品住房装修技术标准
- 2025年云南文山州富宁县建设投资集团有限公司招聘笔试参考题库含答案解析
- 学校膳食监督家长委员会章程
- 工人工资专户开户及监管协议模板
- 学校承接社会考试协议书
- 单位物品借用协议书
- 大学生国家安全教育第1章总论课件可编辑全文
- 智能财税综合实训 上篇 课件 社会共享企业管家
- 房屋产权确认协议书范本
- 眼科进修汇报
- 《上矢状窦血栓》课件
评论
0/150
提交评论