重庆市南开中学高三数学上学期10月月考试卷 文(含解析).doc_第1页
重庆市南开中学高三数学上学期10月月考试卷 文(含解析).doc_第2页
重庆市南开中学高三数学上学期10月月考试卷 文(含解析).doc_第3页
重庆市南开中学高三数学上学期10月月考试卷 文(含解析).doc_第4页
重庆市南开中学高三数学上学期10月月考试卷 文(含解析).doc_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市南开中学2015届高三上学期10月月考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个备选项中,只有一项是符合题目要求的)1已知a、b为两个集合,若命题p:xa,都有2xb,则( )ap:xa,使得2xbbp:xa,使得2xbcp:xa,使得2xbdp:xa,2xb考点:命题的否定 专题:简易逻辑分析:根据全称命题的否定是特称命题,写出它的否定命题即可解答:解:a、b为两个集合,命题p:xa,都有2xb;p:xa,使得2xb故选:c点评:本题考查了全称命题与特称命题的应用问题,解题时应根据全称命题的否定是特称命题,直接写出它的否定命题,是基础题2已知向量,则与( )a垂直b不垂直也不平行c平行且同向d平行且反向考点:数量积判断两个平面向量的垂直关系 专题:计算题分析:根据向量平行垂直坐标公式运算即得解答:解:向量,得,故选a点评:本题单纯的考两个向量的位置关系,且是坐标考查,直接考垂直或平行公式3设集合m=x|x2x20,n=y|y=2x,xm,则r(mn)集合( )a(2,4)b(1,2)c(,1解答:解:由a2a4=a32=1,得a3=1,所以s3=7,又q0,解得=2,即q=所以a1=4,所以=故选b点评:本题考查等比中项的性质、等比数列的通项公式及前n项和公式5对于平面、和直线a、b、m、n,下列命题中真命题是( )a若,=a,=b,则abb若ab,b,则ac若am,an,m,n,则ad若,a,则a考点:空间中直线与直线之间的位置关系 专题:空间位置关系与距离分析:由面面平行的性质定理可判断a;由线面平行的判定定理可判断b;由线面垂直的判定定理可判断c;由面面垂直的性质定理可判断d解答:解:若,=,=b,则由面面平行的性质定理可得:ab,故a正确;若ab,b,则a或a,故b错误;若am,an,m,n,则m,n相交时a,否则a不一定成立,故c错误;若,a,则a与可能平行,可能垂直,也可能线在面内,故d错误;故选:a点评:本题考查的知识点是空间中直线与直线之间的位置关系,熟练掌握空间线面关系的判定理,性质定理和几何特征,是解答的关键6若实数x,y满足约束条件,则函数z=|x+y+1|的最小值是( )a0b4cd考点:简单线性规划的应用;简单线性规划 专题:不等式的解法及应用分析:先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线x+y+1=0时,z最小值即可解答:解:作出可行域如图,由,可得a,由,可得b(0,),由,可得c(0,5)a、bc坐标代入z=|x+y+1|,分别为:;,4,又z=|x+y+1|0,当x=0,y=1时,z取得最小值0z=|x+y+1|取可行域内的红线段mn时x+y+1=0z都取得最小值0故选a点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题7某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )abcd考点:由三视图求面积、体积 专题:计算题;空间位置关系与距离分析:根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算解答:解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:底面扇形的圆心角为120,又由侧视图知几何体的高为4,底面圆的半径为2,几何体的体积v=224=故选:d点评:本题考查了由三视图求几何体的体积,解答的关键是判断几何体的形状及三视图的数据所对应的几何量8将函数f(x)=sin(2x+)的图象向右平移个单位,再将图象上横坐标伸长为原来的2倍后得到y=g(x)图象,若在x=sin(2x+)的图象;再将图象上横坐标伸长为原来的2倍后得到y=g(x)=sin(x+)图象由x+=k+,kz,求得g(x)的图象的对称轴方程为 x=k+若xf(lnx)f(lnx)h(x)0,h(x)在(0,+)上单调递增h(1)h(2)h(e)h(3),又h(1)=,0ba;而c=ef(1)=e=e2h(e)0,abc故选:a点评:如何构造新的函数,要结合题中所给的a,b的结构形式,利用单调性比较大小,是常见的题目本题属于中档题10已知函数 若对任意的实数x1,x2,x3,不等式f(x1)+f(x2)f(x3)恒成立,则实数k的取值范围是( )a0k3b1k4cd考点:函数恒成立问题 专题:函数的性质及应用分析:根据分数函数的特点,将函数进行化简,结合反比例函数的单调性,分类讨论函数的单调性,并分析出函数的值域,构造关于k的不等式,求出各种情况下实数k的取值范围,最后综合讨论结果,可得实数k的取值范围解答:解:=,令2x+2x=t,则t2,则函数等价为g(t)=,(t2),则原题等价为对于t2,minmax恒成立,当k=1时,显然成立;当k1时,由2()1,得;当k1时,1f(t),由21,得1k4,综上;实数k的取值范围是故选:d点评:本题考查的知识点是函数恒成立问题,指数函数的性质,反比例函数的图象和性质,其中利用换元思想及基本不等式将函数进行转化是解答的关键二、填空题(共5小题,每小题5分,满分25分)11复数z=对应的复平面上的点在第四象限考点:复数的代数表示法及其几何意义 专题:数系的扩充和复数分析:利用复数代数形式的乘除运算化简,求出复数所对应点的坐标得答案解答:解:z=,复数z=对应的复平面上的点的坐标为(2,1),位于第四象限故答案为:四点评:本题考查了复数的代数表示法与其几何意义,考查了复数代数形式的乘除运算,是基础题12则f(f(2)的值为2考点:分段函数的解析式求法及其图象的作法;函数的值 专题:计算题分析:本题是一个分段函数,且是一个复合函数求值型的,故求解本题应先求内层的f(2),再以之作为外层的函数值求复合函数的函数值,求解过程中应注意自变量的范围选择相应的解析式求值解答:解:由题意,自变量为2,故内层函数f(2)=log3(221)=12,故有f(1)=2e11=2,即f(f(2)=f(1)=2e11=2,故答案为 2点评:本题的考点分段函数,考查复合函数求值,由于对应法则是分段型的,故求解时应根据自变量的范围选择合适的解析式,此是分段函数求值的特点13设x,y为正数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的最小值是 4考点:等差数列与等比数列的综合 专题:计算题;转化思想分析:先利用条件得到a1+a2=x+y和b1b2=xy,再对所求都转化为用x,y表示后,在用基本不等式可得结论解答:解:由等差数列的性质知a1+a2=x+y;由等比数列的性质知b1b2=xy,所以,当且仅当x=y时取等号故答案为:4点评:本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查归化与转化思想14在abc中,角a,b,c对应的边分别为a,b,c,若a=3,b=,且2acosa=bcosc+ccosb,则边c的长为2考点:三角函数中的恒等变换应用 专题:解三角形分析:首先,根据正弦定理,化简2acosa=bcosc+ccosb,得到2sinacosa=sin(b+c),然后,根据三角形的性质得到a的值,然后,再借助于正弦定理,得到b=,从而得到c=,最后,利用勾股定理求解其值解答:解:根据正弦定理,设,a=ksina,b=ksinb,c=ksinc,2acosa=bcosc+ccosb,2sinacosa=sinbcosc+sinccosb2sinacosa=sin(b+c),a+b+c=,b+c=a,2sinacosa=sina,sina0,cosa=,a=,sina=,根据正弦定理,得,sinb=,b=,c=,c=故答案为:2点评:本题重点考查了正弦定理及其应用、三角恒等变换公式等知识,属于中档题,准确把握正弦定理的变形公式是解题的关键15如图,已知边长为1的正方形abcd位于第一象限,且顶点a、d分别在x,y的正半轴上(含原点)滑动,则的最大值是2考点:二倍角的正弦;平面向量数量积的运算 专题:平面向量及应用分析:令oad=,由边长为1的正方形abcd的顶点a、d分别在x轴、y轴正半轴上,可得出b,c的坐标,由此可以表示出两个向量,算出它们的内积即可解答:解:如图令oad=,由于ad=1故0a=cos,od=sin,如图bax=,ab=1,故xb=cos+cos()=cos+sin,yb=sin()=cos故=(cos+sin,cos)同理可求得c(sin,cos+sin),即=(sin,cos+sin),=(cos+sin,cos)(sin,cos+sin)=1+sin2,的最大值是2故答案为 2点评:本题考查向量在几何中的应用,设角引入坐标是解题的关键,由于向量的运算与坐标关系密切,所以在研究此类题时应该想到设角来表示点的坐标三、解答题(共6小题,满分75分.解答时写出文字说明,证明过程或演算步骤)16某公司有男职员45名,女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组(1)科研攻关小组中男、女职员的人数;(2)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先从小组里选出1名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求选出的两名职员中恰有一名女职员的概率考点:列举法计算基本事件数及事件发生的概率 专题:概率与统计分析:()某同学被抽到的概率是抽取人数与总人数的比值;根据分层抽样,男同学抽取的人数与抽取人数的比值和男同学的人数与总人数的比值相等,可以求出抽取的男同学的人数,进而可以求出抽取的女同学的人数;()先列出总的基本事件,然后找出“选出的两名同学中恰有一名女同学”的基本事件的个数,根据古典概型公式求出概率解答:解:()p=,某同学被抽到的概率为设有x名男同学,则,x=1女同学的人数是1,()把3名男同学和1名女同学记为a1,a2,a3,b,则选取两名同学的基本事件有(a1,a2),(a1,a3),(a1,b),(a2,a1),(a2,a3),(a2,b),(a3,a1),(a3,a2),(a3,b),(b,a1),(b,a2),(b,a3)共12种,其中有一名女同学的有6种选出的两名同学中恰有一名女同学的概率为p=点评:本题考查了分层抽样及古典概型,解决本题的关键是列举基本事件时要按照一定的顺序,不能重也不能漏17已知递增等比数列an首项a1=2,sn为其前n项和,且s1,2s2,3s3成等比数列(1)求的an通项公式;(2)设bn=,求数列bn的前n项和tn考点:数列的求和 专题:等差数列与等比数列分析:(1)利用s1,2s2,3s3成等差数列,确定数列的公比,即可求得数列的通项(2)bn=32n3,由此利用等比数列求和公式能求出数列bn的前n项和tn解答:解:(1)设等比数列an的公比为q,s1,2s2,3s3成等差数列,4s2=s1+3s3,a1=2,4(2+2q)=2+6(1+q+q2),即3q2q=0,解得q=0(舍去)或q=an=2()n1(2)bn=32n3,tn=31+3+33+35+32n3=点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,属于中档题18如图所示,pa平面abcd,四边形abcd为正方形,且e,f,g,h分别是线段pa、pd、cd、bc的中点(1)求证:bc平面efg;(2)dh平面aeg考点:直线与平面平行的判定;直线与平面垂直的判定 专题:证明题;空间位置关系与距离分析:()利用平行公理证明bcef,再利用线面平行的判定,证明bc平面efg;()利用pa平面abcd,证明aedh,利用adgdch,证明dhag,从而可证dh平面aeg解答:证明:()bcad,adef,bcef,bc平面efg,ef平面efg,bc平面efg;()pa平面abcd,dh平面abcd,padh,即aedhadgdch,hdc=dag,agd+dag=90agd+hdc=90dhag又aeag=a,dh平面aeg点评:本题考查线面平行,线面垂直,解题的关键是正确运用线面平行、线面垂直的判定,属于中档题19设函数f(x)=2sinxcos2+cosxsinsinx(0)在x=处取最小值(1)求的值;(2)若实数满足f()+f()=,(,),试求的值考点:三角函数中的恒等变换应用 专题:三角函数的求值;三角函数的图像与性质分析:(1)首先,化简函数解析式,得到f(x)=sin(x+),然后,根据函数f(x)在x=处取最小值,确定=;(2)根据(1),得到f(x)=cosx,然后,根据f()+f()=,得到sin+cos=,从而得到sincos=,最后,化简=2sin,从而确定其值解答:解:(1)f(x)=2sinxcos2+cosxsinsinx,f(x)=2sinx+cosxsinsinx=sinx+sinxcos+cosxsinsinx=sin(x+),f(x)=sin(x+),函数f(x)在x=处取最小值且0,=(2)根据(1)得f(x)=sin(x+)=cosx,f()+f()=cos+cos()=,sin+cos=,=2sinsin+cos=,且(,),sincos=,sin=,的值为点评:本题重点考查了三角函数的图象与性质、三角公式等知识,属于中档题20如图,底面abcd为菱形的直四棱柱abcda1b1c1d1,所有棱长都为2,bad=60,e为bb1的延长线上一点,d1e面d1ac(1)求线段b1e的长度及三棱锥ed1ac的体积v;(2)设ac和bd交于点o,在线段d1e上是否存在一点p,使eo面a1c1p?若存在,求d1p:pe的值;若不存在,说明理由考点:棱柱、棱锥、棱台的体积 专题:空间位置关系与距离分析:(1)如图所示,建立空间直角坐标系由题意可得a,c(0,2,0),d1(0,0,2),b,设e,利用线面垂直的性质、向量垂直与数量积的关系可得e,再利用三棱锥ed1ac的体积v=即可得出(2)假设在线段d1e上存在一点p,使eo面a1c1p连接a1c1、b1d1,相交于点o1,连接o1p,则o1poe另一方面利用向量共线定理即可得出解答:解:(1)如图所示,建立空间直角坐标系由题意可得a,c(0,2,0),d1(0,0,2),b,设e,=,=,=(0,2,2)d1e面d1ac,解得z=3e|b1e|=2|d1a|=|d1c|,|ac|=2,=,|d1e|=三棱锥ed1ac的体积v=(2)假设在线段d1e上存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论