


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。起源 “三角学”,英文Trigonometry,法文Trigonometrie,德文Trigonometrie,都来自拉丁文 Trigonometria。现代三角学一词最初见于希腊文。最先使用Trigonometry这个词的是皮蒂斯楚斯( Bartholomeo Pitiscus,1516-1613),他在1595年出版一本著作三角学:解三角学的简明处理,创造了这个新词。它是由(三角学)及 (测量)两字构成的,原意为三角形的测量,或者说解三角形。古希腊文里没有这个字,原因是当时三角学还没有形成一门独立的科学,而是依附于天文学。因此解三角形构成了古代三角学的实用基础。 早期的解三角形是因天文观测的需要而引起的。还在很早的时候,由于垦殖和畜牧的需要,人们就开始作长途迁移;后来,贸易的发展和求知的欲望,又推动他们去长途旅行。在当时,这种迁移和旅行是一种冒险的行动。人们穿越无边无际、荒无人烟的草地和原始森林,或者经水路沿着海岸线作长途航行,无论是那种方式,都首先要明确方向。那时,人们白天拿太阳作路标,夜里则以星星为指路灯。太阳和星星给长期跋山涉水的商队指出了正确的道路,也给那些沿着遥远的异域海岸航行的人指出了正确方向。 就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角测量就应运而生了。因此可以说,三角学是紧密地同天文学相联系而迈出自己发展史的第一步的 同角三角函数的基本关系式倒数关系:商的关系:平方关系:tan cot1sin csc1cos sec1sin/costansec/csccos/sincotcsc/secsin2cos211tan2sec21cot2csc2 诱导公式sin()sincos()costan()tancot()cot sin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin()sincos()costan()tancot()cotsin()sincos()costan()tancot()cotsin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(2)sincos(2)costan(2)tancot(2)cotsin(2k)sincos(2k)costan(2k)tancot(2k)cot(其中kZ) 两角和与差的三角函数公式万能公式sin()sincoscossinsin()sincoscossincos()coscossinsincos()coscossinsin tantantan() 1tan tan tantantan() 1tan tan 2tan(/2)sin 1tan2(/2) 1tan2(/2)cos 1tan2(/2) 2tan(/2)tan 1tan2(/2) 半角的正弦、余弦和正切公式三角函数 的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin22sincoscos2cos2sin22cos2112sin2 2tantan2 1tan2sin33sin4sin3cos34cos33cos 3tantan3tan3 13tan2 三角函数的和差化积公式三角函数的积化和差公式 sinsin2sincos 2 2 sinsin2cossin 2 2 coscos2coscos 2 2 coscos2sinsin 2 2 1sin cos-sin()sin() 2 1cos sin-si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年储能行业政策扶持下的移动储能解决方案报告
- 2025年风能行业数字化转型策略与运营流程再造报告
- 第五单元 国乐飘香《欣赏 雨打芭蕉》教学设计-2023-2024学年乐人音版初中音七年级下册
- 2025年功能性食品市场创新驱动因素分析:消费者需求与产品研发动态
- 2025年环保设备行业绿色制造技术政策与市场分析报告
- 2025年工业污染场地修复技术优化与成本效益评估报告
- 2025年在线教育平台互动性提升策略与用户满意度研究报告
- 冬季电锅炉采暖方案
- 第一节 多边形说课稿初中数学沪教版上海八年级第二学期-沪教版上海2012
- 2025年中国感光绝缘材料行业市场分析及投资价值评估前景预测报告
- 华为供应商质量认可标准实施细则
- 少先队知识竞赛题及答案
- 天气现象科学课件
- 航海船舶航线选择指南
- 2025年中小学校长岗位竞聘面试题库及答案
- 沪粤版2024九年级物理上册新教材解读课件
- 2025年中国心血管病报告
- (新版)汽车维修检验工(高级)技能鉴定考试题库(含答案)
- 建设工程工程量清单计价标准(2024版)
- 手外伤康复护理课件
- 客户价值共创机制-洞察及研究
评论
0/150
提交评论