




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
流体力学 顾伯勤主编 研究生教材 退出 中国科学文化出版社 第二篇流体动力学基本原理及流体工程 流体动力学微分形式基本方程流体动力学积分形式基本方程伯努利方程及其应用量纲分析和相似原理流动阻力与管道计算边界层理论流体绕过物体的流动气体动力学基础 第五章 第六章 第七章 第八章 第九章 退出 返回 第十章 第十一章 第十二章 第五章流体动力学微分形式基本方程 连续性方程理想流体运动方程实际流体运动方程 第一节 第二节 第三节 退出 返回 流体运动须遵循物质运动的某些普遍规律 如质量 动量和能量守恒定律 这些普遍规律应用于流体运动就可得到联系流体速度 密度 压力 温度等参数之间的关系式 这些关系式称为流体动力学的基本方程 基本方程可以对微元体建立 得到微分形式的基本方程 也可以对控制体建立 通过对控制体和控制面的积分而得到流体参数间的积分关系式 求解微分形式基本方程或求解对微元控制体建立的积分形式的基本方程 可以给出流场细节 即空间各点上压力 温度 速度 密度等流体参数的分布 本章讨论微分形式的基本方程 第五章流体动力学微分形式基本方程 退出 返回 第1页 第五章流体动力学微分形式基本方程 退出 返回 第一节连续性方程 第2页 在研究流体运动时 对于流体量的处理上必须遵循物质不灭原理 因为流体充满整个流场 连续不断运动 所以在流体力学中物质不灭原理又称为连续性原理 反映这个原理的数学关系式叫做连续性方程 一 笛卡儿坐标系统的连续性方程 在流场中取一六面体微团 其边长为 图5 1 沿方向在单位时间 内流入六面体的流体质量为 沿 方向在单位时间内流出六面体的流体 沿 方向在单位时间内净流出 质量为 六面体的流体质量为 第五章流体动力学微分形式基本方程 退出 返回 第一节连续性方程 第3页 同理可得 沿 方向在单位时间内净流出六面体的流体质量为 沿 方向在单位时间内净流出六面体的流体质量为 单位时间内净流出整个六面体的流体质量为 另外 流体密度随时间的变化也影响六面体中流体的质量 设在 时刻流体密度为时刻流体密度为 则在单位时间内由于密度变化而使六面体中增加的流体质量为 第五章流体动力学微分形式基本方程 退出 返回 第一节连续性方程 第4页 根据连续流动原理 净流出六面体的流体质量与六面体中流体的增加量之和为零 六面体中流体的质量是不变的 即 式 5 1 就是流体的连续性方程 将上式展开 并且注意到 5 1 则连续性方程也可写成 写成向量形式 5 3 5 3a 或 5 2 第五章流体动力学微分形式基本方程 退出 返回 第一节连续性方程 第5页 对于稳定流动 于是式 5 1 变为 即 5 4a 5 4 对于不可压缩流体 为常数 则连续性方程为 5 5 5 5a 即 第五章流体动力学微分形式基本方程 退出 返回 第一节连续性方程 第6页 二 圆柱坐标系统的连续性方程 在圆柱坐标系统中 取一扇形六面体流体微团ABCD 如图5 2所示 单位时间内流入AB BC CA面的流体质量分别为 单位时间内流出CD DA BD面的流体质量 分别为 第五章流体动力学微分形式基本方程 退出 返回 第一节连续性方程 第7页 单位时间内 微团中净流出的流体质量为 由于微团中流体密度增加而使微团中增加的流体质量为 根据连续性原理 微团中流体质量的总变化应等于零 所以 此即圆柱坐标系统的连续性方程 5 6 对于不可压缩流体 为常数 连续性方程为 5 7 第五章流体动力学微分形式基本方程 退出 返回 第二节理想流体运动方程 第1页 运动方程描述流体在运动中所受的力与流动参量之间的关系 理想流体是指无粘性的流体 工程实践中的流体都是具有粘性的 它们并不是理想的流体 但在很多情况下 流体的粘性力和其他力比起来作用很小 因而可视为理想流体 一 理想流体运动方程的建立建立运动方程的基础是牛顿第二运动定律 在理想流体流场中取出一微小六面体微团 微团所受的力有表面力 压力 和体积力 质量力 六面体在轴方向上所受的表面力和单位质量的体积力如图5 3所示 设单位质量的体积力为X Y Z 则在 轴方向根据牛顿第二运动定律 应有 第五章流体动力学微分形式基本方程 退出 返回 第2页 化简得 轴方向力的平衡关系式 于是有 同理可推导得到 5 8 第二节理想流体运动方程 第五章流体动力学微分形式基本方程 退出 返回 第3页 式中 称为单位质量的体积力矢量 5 8a 5 8 式就是理想流体的运动方程 它是欧拉于1755年提出的 故又称欧拉运动方程 它给出了压力 体积力与惯性力的关系 对于给定的流体 密度已知 或者已知压力与密度的关系 例如气体方程 在已知体积力场 即X Y Z已知 内 根据此式和连续性方程进行积分 可解出任意时刻t 流场中任意位置 x y z 的p wx wy wz 但是实际对该式进行解析计算是有困难的 往往需要给定限制条件 最简单的限制条件是讨论沿流线的运动和无旋流场 这两种情况都是有现实意义的 后面将详细讨论 第二节理想流体运动方程 第五章流体动力学微分形式基本方程 退出 返回 第4页 欧拉方程在圆柱坐标系统中的形式 可以用上述同样的方法得到 在流场中取微小扇形六面体微团 然后根据牛顿第二运动定律列出微团的力的平衡方程 从而得到该坐标系统的欧拉运动方程 具体形式如下 5 9 式中 分别为单位质量的体积力在r z方向的分量 第二节理想流体运动方程 p T 除了用欧拉方程和连续性方程外 还要增加状态方程和能量方程来求解 求解理想流体运动问题主要依靠欧拉方程和连续性方程 方程是普遍的 但各个问题的初始条件和边界条件不同 因此对各个具体问题应作具体分析 初始条件是指流体运动开始瞬时所对应的条件 在理想流体力学问题中 所要求的是 第五章流体动力学微分形式基本方程 退出 返回 第5页 二 理想流体运动方程的求解对不可压缩流体的流动 未知量为p 连续性方程就能求解 对可压缩流体的流动 其未知量有 p T 因此 在时 这些物理量 故欧拉方程加上 的数值应是给出的 即 第二节理想流体运动方程 第五章流体动力学微分形式基本方程 退出 返回 第6页 其中 f1至f6是给定的函数 对于稳定流动 流场中各点的物理量不随时间改变 所以不存在初始条件 边界条件是指所求物理量在边界上的取值 如对静止的固体壁面 由于流体不能穿过这种壁面 同时流体与边界壁面间不会形成空隙 则紧贴边界壁面的那层流体沿壁面法线方向的流体速度分量为零 即 而其切向分量不为零 对移动的固体壁面 该层流体速度的法向分量必须等于固体边界壁面上相应点的速度的法向分量 即 又如根据作用力和反作用力相等的定律 流体作用于边界壁面或自由面上外界介质流体质点的力 等于边界壁面或外界介质作用于该流体上的力 即 第二节理想流体运动方程 第五章流体动力学微分形式基本方程 退出 返回 第7页 例题5 1有一稳定流场 其速度分布为 试证明它是不可压缩流动 又假定质量力为重力 z轴垂直向上 长度单位为m 试计算点M 2 2 5 处的压力梯度 解 连续性方程和运动方程分别为 对不可压缩流动连续性方程变为 将速度分布代入上式得到 因此 该流动为不可压缩流动 第二节理想流体运动方程 第五章流体动力学微分形式基本方程 退出 返回 第8页 由于质量力为重力 则运动方程为 将给定的A x y z代入 得到 第二节理想流体运动方程 第五章流体动力学微分形式基本方程 退出 返回 第三节实际流体运动方程 第1页 一 实际流体运动方程的建立欧拉方程是属于理想流体的运动方程 理想流体是没有粘性的 实际流体具有粘性 因此作用在流体微团上的力将更加复杂 现仍取流场中边长为的微团六面体来分析 图5 4 由于流体具有粘性 因而 作用在每个正方形面上的力 除去法向力外还有切向力 剪切力 而法向力也和理想流体情况不同 它不只是流体的表面力 压力 而且还有由于剪切变形引起的附加的法线方向的力 用 表示法向应力 用 表示切向应力 则所有作用在微团上沿x轴方向的表面力的合力为 x轴方向的质量力为 退出 返回 第五章流体动力学微分形式基本方程 退出 返回 第2页 第三节实际流体运动方程 根据牛顿第二运动定律列出x轴方向力的平衡式如下 即 同样可得到沿y和z轴方向力的平衡关系式 经化简得到 5 10 第五章流体动力学微分形式基本方程 退出 返回 第3页 第三节实际流体运动方程 将弹性力学中的应力应变关系式应用到流体力学中 作如下替换 用流体力学中的变形速率代替弹性力学中的应变 用流体的动力粘度 代替固体的剪切模量G 用流体压力的负值 代替弹性力学中的平均法向应力 当流体流动停止 静止流体 或者作匀速运动时 所有剪切应力都将消失 法向应力中只剩下压力 而对于存在剪切应力的一般情况 此种压力仍然存在 并且与坐标方向无关 所以在一般实际流体的运动方程中仍可认为 只有在速度梯度和温度梯度极高时才有较大偏差 经过上述替换 可以得到实际流体运动时的应力与变形速率的关系如下 第五章流体动力学微分形式基本方程 退出 返回 第4页 第三节实际流体运动方程 由式 5 11 的前三式可以看出 粘性流体运动中的法向应力由两部分组成 即静压力p和剪切变形引起的附加的法线方向的应力 将式 5 11 代入式 5 10 可得 5 11 第五章流体动力学微分形式基本方程 退出 返回 第5页 第三节实际流体运动方程 式 5 12 就是实际流体的运动方程 或称纳维 斯托克斯 Navier Stokes 方程 当流体的粘度不变时 式 5 12 可以写成 5 12 第五章流体动力学微分形式基本方程 退出 返回 第6页 第三节实际流体运动方程 或者写成向量形式 5 13 对于不可压缩流体 因为 则写成 第五章流体动力学微分形式基本方程 退出 返回 第7页 第三节实际流体运动方程 或者写成向量形式 5 14 对于圆柱坐标系统 考虑一扇形六面体微团 以r r dr d z z dz六个面为边界面 按牛顿第二运动定律取力的平衡 可以得到圆柱坐标系统的纳维 斯托克斯方程 考虑粘度为常数时 其形式如下 推导从略 第五章流体动力学微分形式基本方程 退出 返回 第8页 第三节实际流体运动方程 第五章流体动力学微分形式基本方程 退出 返回 第9页 第三节实际流体运动方程 式中Fr F Fz为单位质量的体积力在r z方向的分量 第五章流体动力学微分形式基本方程 退出 返回 第10页 第三节实际流体运动方程 对于不可压缩流体 对于稳定流动 有 上述方程显然便可简化 二 实际流体运动方程的求解 由纳维 斯托克斯方程 连续性方程 状态方程 能量方程 热力学第一定律 和粘度温度关系式 七个方程可以联立求解出 p T 七个未知量 求解必须在一定的初始条件和边界条件下进行 对于稳定流动 只需给出边界条件 由于粘性流体的粘附效应 固体壁面上的流体质点和对应的固体壁面具有相同的速度 即 注意到纳维 斯托克斯方程中 惯性项是非线性项 因而求解十分困难 对于理想流体 存在速度势时 不可压缩理想流体的流动问题简化为求解拉普拉斯问题 因而可以由许多简单的流动叠加成为复杂的流动 但对于粘性流体 由于是非线性问题 就不能用叠加的方法求解 第五章流体动力学微分形式基本方程 退出 返回 第11页 第三节实际流体运动方程 迄今为止 除了一些经典问题以外 一般问题的解析求解仍然是不可能的 近年来数值计算方法发展很快 借助于现代计算工具 使工程实际中许多复杂的流体力学问题得以解决 而纳维 斯托克斯方程作为计算基础是十分重要的 例题2求解两块固定无限长二维平行平板间不可压缩流体的稳定层流问题 图5 5 解 x轴取在两平板中间 流动沿x方向 故wy wz 0 对于不可压缩流体的稳定平面流动 纳维 斯托克斯方程和连续性方程为 第五章流体动力学微分形式基本方程 退出 返回 第12页 第三节实际流体运动方程 第二 第三式说明压力p仅是x的函数 而与y z无关 最后一式说明wx与x无关 这样 第一式成为 第五章流体动力学微分形式基本方程 退出 返回 第13页 第三节实际流体运动方程 上式左边为x的函数 右边是y的函数 对于不同变量的全微分等式 仅当等式两边都等于常数时才能成立 故有 由边界条件 当 时 得到 则可得到流速分布 可见wx沿平板间隙高度方向是抛物线分布的 如图5 5所示 若板长为l 入口和出口端压力分别为p1和p2 则流速分布公式可写成 第五章流体动力学微分形式基本方程 退出 返回 第14页 第三节实际流体运动方程 流过板宽b的流量为 例题3求解长圆管内不可压缩流体的稳定层流问题 设管长为l 质量力不计 图5 6 解 显然该问题中 由柱坐标下不可压缩流体的连续性方程和纳维 斯托克斯方程得到 第五章流体动力学微分形式基本方程 退出 返回 第15页 第三节实际流体运动方程 由第一式和流动的对称性可知 由第一式及流动的对称性可知 wz仅是r的函数 由第二 第三式可知p仅是z的函数 这就是说垂直于管子轴线各端面上速度分布是相同的 同一端面上压力分布是均匀的 第四式中 第一项为z的函数 第二项为r的函数 故仅当两项均为常数时 该式方能成立 对第四式进行积分得到 由边界条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025数码产品购销合同
- 2025年4月贵州黔南州福泉市招聘城镇公益性岗位4人模拟试卷及答案详解(必刷)
- 2025第二季度贵州安顺市平坝区美农科技有限公司招聘9人考前自测高频考点模拟试题及答案详解(夺冠)
- 2025年延安东辰中学教师招聘模拟试卷有完整答案详解
- 大专建筑考试题库及答案
- 国防大学语法考试题库及答案
- 业务合同评审与执行监督双控工具
- 高效能治理工作目标承诺书(4篇)
- 2025年国防教育知识竞赛题库及参考答案
- 高新技术产品代理销售合同计划书
- 2025年造价咨询公司廉政制度及保障措施
- 2025至2030中国停机坪货架行业项目调研及市场前景预测评估报告
- 补液课件教学课件
- 电池厂化成柜安全操作规范规章
- 电力公司施工安全培训课件
- 2025年一级建造师《(市政公用工程)管理与实务》考试真题及答案
- 农村财务报账员培训课件
- 宏村简介课件
- 潍坊市2026届高三开学调研监测考试数学试题及答案
- 车辆产品公告管理办法
- 2025喀什经济开发区兵团分区招聘(10人)考试参考试题及答案解析
评论
0/150
提交评论