




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽屉原理教学设计 刘淑花教学目的:1. 知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。3. 情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教学过程:一、问题引入。师:今天我们一起来玩一个游戏游戏吧!这个游戏的名字叫做“抢凳子”现在,老师这里准备了3把凳子,请4个同学上来,谁愿来?生:生争先恐后的要上来,师选出4个同学。师:请听清楚游戏要求,音乐一停,请你们4个都坐在凳子上,每个人必须都坐下。听清楚要求了吗?游戏完后师述:“不管怎么坐,总有一把凳子上至少坐两个同学”这句话说得对吗?不管怎么坐,总有一把凳子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。2、 探究新知(一)教学例1 课件出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?师:请同学们分小组实际放放看,或者动手画一画。各小组汇报放或者画的情况. (1)、枚举法(师用课件演示各种摆放的过程)(2)、数的分解法:(课件出示) (4,0,0)(3,1,0)(2,2,0)(2,1,1),课件出示问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?总结:不管怎么放,总有一个盒子里至少有2枝笔。课件出示问题,生回答后师课件出示 a 、“总有”是什么意思?(一定有)b、“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作得到了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢(3)、假设法(反证法)学生思考并进行组内交流,教师选代表进行总结,并用课件演示平均放的过程. 如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。课件出示问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?把100枝笔放进99个盒子里呢?你发现什么?生回答后总结板书: 只要放的铅笔数比盒子数多1,总有一个盒子里至少放进2支。2完成课本“做一做”,学习解决问题。课件出示问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?(1)学生活动独立思考自主探究(2)交流、说理活动。引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个鸽笼里”。(二)教学例2 1出示题目例2:课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?2学生汇报,教师给予表扬后并总结:总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。课件出示: 52=2本1本(商+1)课件出示问题:把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。课件出示: 72=3本1本(商+1) 92=4本1本(商+1)课件出示问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。)小组汇报后,师用课件演示这一过程. 剩下的2本书既可以放进同一个抽屉里,也可以分别放进2个抽屉里。要保证“至少”就继续从“最不利的情况”考虑,让2本书放进2个抽屉。达到“至少”有2本书在1个抽屉里. 板书:53=1本2本,用“商+ 1 总结:课件出示用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。课件出示:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。三、解决问题1.课本上的做一做2.小游戏师:从扑克牌中取出两张王牌,在剩下的52张扑克牌任意抽牌。(1) 从中抽出18张牌,至少有几张是同花色?(2) 从中抽出20张牌,至少有几张数字相同? 3.一盒围棋棋子,黑白子混放,我们任意摸出3个棋子,至少有2个棋子是同颜色的,为什么? 4.六(6)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省武汉市青山区5月2026届九年级化学第一学期期中质量检测试题含解析
- 2026届三门峡市重点中学化学九年级第一学期期中联考试题含解析
- 2026届四川省绵阳市绵阳外国语学校英语九年级第一学期期末经典试题含解析
- 离婚协议范本:财产分割、子女抚养及债务偿还方案
- 高端商务楼宇物业管理与客户关系维护合同
- 竞业禁止协议赔偿金额界定与劳动者权益保障
- 跨界融合的私立学校校长聘用与管理合同
- 税务筹划与税收筹划培训顾问服务协议
- 离婚时共同房产处置及居住权分配协议公证模板
- 离婚债务承担与财产分割及子女抚养费用分担协议
- JJG 207-2025气象用玻璃液体温度表检定规程
- 化工企业安全操作规程管理制度
- 【公开课】角的平分线+第2课时 角平分线的判定课件++2025-2026学年+人教版八年级数学上册
- 妇产科疾病编码培训课件
- 除湿转轮培训
- 2023版押品考试题库含答案
- 种植农具介绍课件
- 物业保密制度管理制度
- plm考试试题及答案
- 液压爬升模板工程技术标准 JGJ-T 195-2018 知识培训
- 培训机构十项管理制度
评论
0/150
提交评论