




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
标签:标题2016数学之美读书报告NANCHANGUNIVERSITY数学建模课程读书报告题目:数学的奥妙读书报告学院:理学院专业:姓名、学号:任课教师:时间:2013年5月11日数学之美数学的奥妙读书报告摘要:这本书为我们打开了一扇科学的大门,呈现在我们面前的是广阔的知识海洋,沙滩上散落着无数智慧的珠贝,五彩斑斓,美不胜收!走进数学的奥妙这个魅力无穷的世界,在探索万物奥妙的征程中发现数学各式各样的美!关键词:机智、数、公式、语言美、简洁美、和谐美正文:对数学美的发现及概述数学的奥妙这本书让我对数学有了更深的了解。结合所学的数学知识和所看的数学方面的书,我对数学之美也有了更多的领悟。英国著名数理逻辑学家罗素指出:“数学,如果正常地看它,不但拥有真理,而且也具有至高的美,正如雕塑的美,是一种冷而严肃的美。”英国著名数学家哈代认为,不美的数学在世界上是找不到永久容身之地的。美国数学家、控制论的创始人维纳则说:数学实质上是艺术的一种。数学中的美是千姿百态、丰富多彩的。在很多数学知识中都包含着各式各样的美。1)语言美数学有着自身特有的语言数学语言。比如数的语言符号语言:关于“”,九章算术如斯说:“割之弥细,所失弥小,割之又割,以至于不可割,则与圆合体,而无所失矣”;面对“2”这一差点被无理的行为淹没的无理数,我们一直难以忘怀那位因发现“边长为1的正方形,其对角线长不能表示成整数之比”这一“数学悖论”而被抛进大海的希帕索斯。还有sin?、等等,一个又一个数的语言,无不将数的完美与精致表现得淋漓尽致。2)简洁美莫德尔说过:“在数学里美的各个属性中,首先要推崇的大概是简单性了。”爱因期坦也说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。欧拉给出的公式:1)e+1=0,这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。如此简单却又意义深刻,数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。2)V,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数、棱数、面数,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。比如:圆的周长公式:C=2R勾股定理:直角三角形两直角边的平方和等于斜边平方。数学中绝大部分公式都体现了“形式的简洁性,内容的丰富性”。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。如笛卡尔坐标系的引入。对数符号的使用,复数单位的引入。微积分的出现都体现了数学外在形式更简洁,内容更深厚。3)和谐美:数学,首先是一个和谐统一的整体。和谐性的主要表现形式是统一、有序、无矛盾以及对称、对偶和平衡等等。无论是观点的论述,还是定理的证明,首先要求的是所陈述的内容是正确的,是符合科学的。其次,要求逻辑推理的严密。数学的统一表现为各种观点的相互印证、各种结构的相互协调、各种方法的相互融合,各门课程的相互渗透。一篇文章,如果是一气呵成,成为一个统一的整体,就给读者一种美的享受。而对称、对偶在数学中的例子,真是无穷无尽。正三角形、正方形以及正多边形,无一不是对称图形。城市中的标志性建筑物,大部分都是对称的建筑物,如上海的东方明珠塔,巴黎的埃菲尔铁塔。埃及的金字塔,尽管只是简单的三角形形状,它的轮廓只是几条线段,但都给人一种庄重的感觉。站在北京的天安门广场眺望天安门城楼,无不为中国古代建筑师的杰作而叹为观止,这其中就包含了对称性和各部分建筑的合适的比例。自然界中对称性也比比皆是:美丽的蝴蝶、绚丽的花朵、晶莹的雪花?,无一不是大自然的杰作。然而黄金分割数把和谐之美体现得淋漓尽致。古希腊的毕达哥斯学派,首先从数的比例中求出美的形式,这就是黄金比0.618。黄金比从它产生之时起,就作为公认的一条美学规律,无数艺术家的艺术作品,都是根据这个比例或接近这个比例而创作出来的。这些艺术品都给人一种和谐美的感觉。直到当代,数学大师华罗庚把它应用于最优化理论中,在优选法中,创造了应用很广的0.618法。数学中的重要思想方法之一:数形结合法更体现了“数”与“形”的和谐美。除此之外,数学还有很多其他方面的美。比如奇异美、对称美、创新美、统一美、哲学美、应用美等等。数学的美,她需要人们用心、用智慧深层次地去挖掘,更好地体会她的美学价值和她丰富、深隧的内涵和思想,及其对人类思维的深刻影响。古希腊数学家普洛克拉斯指出:“哪里有数,哪里就有美。”因此,我们应该仔细体会数学,那样它的美才会体现。当然世间万物亦如此!“生活中并不缺少美,只是缺少发现美的眼睛。”数学文化读书报告数学是什么数学是什么?正如科学是什么、系统是什么、精神是什么、文化是什么、生命是什么等问题一样,都是众说纷纭的问题。每个人都觉得自己知道一些,但就是说不清楚,不仅是我们这种学了十几年数学的新手说不上来,就连那学了几十年的老学者也不一定能说得明白,数学的高深可见一斑。有人说,从工作领域来看,数学是技术,数学是逻辑,数学是科学,数学是艺术,数学是文化;有人说,从数学的对象来看,数学研究计算,数学研究数和量,数学研究模型,数学研究无穷;还有人说,从社会价值看,数学是语言,数学是工具,数学是框架,数学是符号游戏?这些看法都有其道理,但没有一个观点可以充分说明现代数学研究的全部特点。数学源自于古希腊,是研究数量、结构、变化以及空间模型等概念的一门科学。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。按照大卫希尔伯特的观点:1.数学是研究抽象形式与关系的领域;2.数学对象如果追根溯源的话,应该来自我们经验的现实世界,然而,从一开始,抽象及推广两种有效的方法就一直在起作用,因此,大部分数学概念是由一些比较基本的概念衍生出来的;3.数学同时是“在”的科学也是“为”的科学;4.数学的不朽性。仁者见仁,智者见智,但数学本身的特质是唯一的,是亘古不变的,我们应该站在前人的肩膀上,不断加深对数学的理解与认识。数学之美“数学,如果正确的看,不但拥有真理,而且也具有至高无上的美”,罗素说。数学人类进化过程中创造的学问,它是智慧的积累、知识的升华、技巧的创新,其中也自然不乏美。因为数学正是在不断追求美的过程中发展的。诚然,人类的进步、社会的发展,正是人类不断追求“美”、创造“美”的结晶。数学之美到底美在哪里?数学的和谐之美。高尔泰说,“所谓数学的和谐不仅是宇宙的特点,原子的特点,也是生命的特点、人的特点。”数学的严谨自然流露出它的和谐,为了追求严谨、追求和谐,数学家们一直在努力消除其中不和谐的东西。比如悖论,它是指一个自相矛盾或与广泛认同的见解相反的命题或结论,一种误解,或看似正确的错误命题及看似错误的正确结论。在很大程度上讲,悖论对数学的发展起着举足轻重的作用,数学史上被称作“数学危机”的现象,正是由于某些数学理论不和谐所致。对消除这些不和谐问题的研究,反过来却导致数学本身的和谐而且促进了数学的发展。这正如数学家贝尔和戴维斯指出的那样:数学过去的错误和未解决的困难为它未来的发展提供契机。数学的形式美。艺术家追求的美中,形式是特别重要的,比如泰山的雄伟、华山的险峻、峨眉山的秀丽、黄河的蜿蜒、长江的浩瀚?常常是艺术家们渲染它们美的不同的形式与角度。数学家也十分注重数学的形式美,尽管有时它们的含义更加深邃,比如整齐简练的数学方程、匀称规则的几何图形,都可以看成一种形式美,这是与自然规律的外在表述有关的一种美。寻求最适合表现自然规律的一种方法,是对科学理论形式美的一种追求。比如杨辉三角、运用割圆术所得的图形、矩阵、级数、还有黄金分割等都具有令人震撼的形式美,尤其是我们人体的许多部位的比例、埃及著名的金字塔的设计比例等都符合黄金分割的规律的这一事实,更加印证了,数学从它诞生的那一刻起便拥有了耐人寻味的、源源不断的形式之美。数学的奇异之美。英国哲人培根说过,“没有一个极美的东西不是在匀称中有着某种奇特”,他又说,“美在于奇特而令人惊异。数学处处充满着令人惊叹的奇异之美”。例如,直角三角形的两直角边的平方和等于斜边的平方;不定方程3x*x-y*y=2有无数组有理数解,但方程x*x-3y*y=2却没有有理数解;任给一个自然数,若它为偶数则将它除以2,若它为奇数,则将它乘以3后再加1,?,如此下去经有限步骤后其结果必为1。这样的例子还有很多很多,与其说数学的奇异性是偶然产生的,不如说是数学本身的特质决定了它自身产生奇异性的必然性。数学的简洁之美。上小学时,碰到说明性的题目,我们会老老实实长篇大论地写“因为?所以?”;到了中学,老师教我们在证明题中“因为”可以用倒三角的三个顶点来表示,“所以”可以用正三角的三个顶点来表示;到了大学,又学会了数理逻辑中“任意”、“存在”的表示方法,记住了多个数字求和可以用求和符号E,多个数连乘可以用等符号,还有集合的交、并、绝对补、对称差、求幂集等符号,微积分的积分、求导、极限符号,命题中的合取、析取、蕴含、等价符号,二元关系中的定义域、值域、等价关系、偏序集等符号,代数系统中的群、格等。不难发现很多用汉字表述起来很复杂的概念,数学都可以用其特定的简洁明了的数学符号组合直接表示出来。数学之美是现实的、具体的,以致于我们看得见、摸得着;然而,数学之美又是浩瀚的、朦胧的,以致于我们耗尽毕生心血也无法完全看清它、把握它。这就是数学的独具魅力之处,它激励着一代又一代的人不畏艰辛与困苦,为了数学事业的发展不懈奋斗。数学推动科学发展、社会进步不管怎么说,数学最大的社会功能是推动科学发展,而科学发展则是现代社会进步的主要动力。在理论思维中,数学思维占有重要地位,它使物理概念精密化、定量化,它以自己特有的思想不变性、对称性、极大或极小得出新物理量以及守恒律等数学规律。而在实验观测中,使用先进的方法推算结果以及数据处理和揭示经验规律也都是重要的数学手段,数学就这样推动了科学的发展。更重要的是,数学的思维以及科学对社会进步造成的巨大冲击,反过来也发展了数学。数学与物理科学。众所周知,在行程问题中,v=s/t,但是这个v是物体在t时间段内的平均速度,即它只能反映物体在t时间内物体从一个地点移动到另一个地点的平均快慢程度。若要求该物体在某一时刻的瞬时速度,我们必须考察在t趋近于无穷小的时候,相应的s与t的比值,即求t0时,s/t的极限值。为了解决这个物理问题,科学家们提出了微积分的思想,可见,物理高度发展的前提是作为其发展工具的数学必须有高度的发展,就像高中物理老师说过的话,“数学学得好的同学,物理不一定好,但是物理学得好的人,数学一定好。”数学与生物科学。对于生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,人的肉眼只能观测到一个大概的状态,如果要精确反映出生物的各种特性,我们必须依据性状本身的生物学意义,用适当的数值予以描述,这也就是所谓的量化。比如反映一个培养皿中的细菌的繁殖状况,我们会应用坐标系讲培养皿的温度分布状况、营养分布状况、细菌生成状况等描绘出来,进而找到影响细菌繁殖的各种外界因素,以便快速培养、快速繁殖,这跟人体组织、器官的培养是相似的。又比如,高中生物学里遗传问题,我们需要用概率的知识计算出小孩患病与否的概率,长出的豌豆是褶皱的还是圆滑的概率等等,这些研究离开数学也是无法进行下去的。数学与社会科学。对于社会科学中的经济学,经常会遇到求最优方案问题,于是便要用到线性规划相关的数学方法求最大、最小值;对于社会学,人口统计问题、城市规划问题、交通问题、医疗问题等,还是要大量用到数理统计的内容,并用数学的眼光对采集到的数据进行量的分析,进而对质做出判断。数学与人文学。音乐方面,自古以来数学就已经渗入到艺术家的精神之中。从毕达哥拉斯时代起,乐理已经是数学的一部分。他把音乐解释为宇宙的普遍和谐,这种和谐同样适用于数学及天文学。开普勒从音乐与行星之间找到对应关系,莱布尼茨首先从心理学来分析音乐,他认为“音乐是一种无意识的数学运算”,这更是直接把音乐与数学联系在一起。在绘画与雕塑方面,各民族都有自己的创造。文艺复兴时期,西欧的绘画与数学平行发展,许多艺术家也对数学感兴趣,他们深入探索透视法的数学原理等等。这些强有力的事实,再次印证了数学自身的强大魅力及巨大推动作用。“科技是第一生产力”,科技水平的高低从很大程度上决定并反映了一个社会的发展程度,而数学又是推动理论革新、科技发展的有力工具,可以说数学发展决定社会进步。数学学习的必要性与紧迫性从社会角度看,18世纪以来,先后有美国、法国、德国在英国工业革命的影响之下进行了具有重大意义的工业革命,推动了科技进步,大力发展了国内生产力,使得国内经济、政治、文化事业迅速繁荣,与工业革命之前相比取得了质的飞跃。在推动英、美、法、德迅速成为世界强国的同时,也推进了其他国家的工业革命进程,为世界、科技、经济、政治发展作出了重大贡献。社会是不断向前发展的,随着社会的发展、人民群众对物质文化需要的日益增长,人们对数学理论的创新、发展提出了更高的要求,于是便有更多的数学工作者投入到数学研究之中,与此同时,发展了的数学理论也反过来作用于社会,进而促进社会更加发展,如此循环下去,数学愈加发展,社会愈加进步。毫不夸张的说,没有数学发展,就没有社会进步。从个人角度看,数学不仅仅是帮助我们如何计算1+1=2,更重要的是激励我们思考,为什么1+1=2,在普通的加法运算中是等于2,但是在离散数学中1+1=2就不一定成立了;数学不仅仅是让我们求一个积分求一个导数,更重要的是让我们与生活中的实际问题相联系,用数学的手段来解决生活中的问题,比如求一个质量分布不均匀的圆盘的质量、求t时间内通过某一截面的流量、做功问题等;数学不仅仅是让我们玩“因为p所以q”、“a等价于b”这样的文字游戏,更多的是培养我们的一种理性思维、逻辑思维,就好比我们要去做一个演讲,要先讲什么再讲什么,对于别人的观点,我们该如何做到有力、有序的反驳等?为什么全世界那么多学校大多数专业都要求学数学,为什么高考中要强调“数学、英语”极其优异的可以享受一定的政策,为什么企业更加宁愿招聘数学专业出身的学生,这都说明了,数学水平的高低很大程度上代表了一个人的能力的大小。综上所述,数学无论是对于社会的进步还是个人的发展都是极其重要的,因此数学学习是极其必要的。西方发达国家的数学、科技水平已经领先我们好几十年,如果没有强有力的数学来推动我国的进步,我国与他们的差距将会日益增大,中华民族大伟大复兴也就遥遥无期了。时代在召唤,我们的使命空前沉重。不要再仅仅是为了完成学业而懒懒散散地搞学习、搞数学,不要再因为数学严谨的证明、深奥的过程而对数学畏畏缩缩、蜷缩不前。少一分浮躁,多一分踏实,少一分急功近利,多一份淡薄名利,踏实做人,低调做事,从自己的数学修养做起,从自己的个人素养做起。让我们共同播种承载中华儿女复兴梦想的希望之种,辛勤耕耘,翘首以盼,我们终将共同见证,它生根、发芽,最终长成参天大树,傲然撑起中华民族的广阔天空!数学之美读后感确切的来说,数学之美并不是一本书,它是谷歌黑板报中的一系列文章,介绍数学在信息检索和自然语言处理中的主导作用和奇妙应用,每一篇文章都不长,但小中见大,从看似高深的高科技中用通俗易懂的案例展示了数学之美,深深的吸引了我。这一系列文章的作者是google公司的科学家吴军。他毕业于清华大学计算机系和电子工程系,并于1993-1996年在清华任讲师。他于1996年起在美国约翰霍普金斯大学攻读博士,并于XX年获得计算机科学博士学位。在清华和约翰霍普金斯大学期间,吴军博士致力于语音识别、自然语言处理,特别是统计语言模型的研究。他曾获得1995年的全国人机语音智能接口会议的最佳论文奖和XX年eurospeech的最佳论文奖。吴军博士于XX年加入google公司,现任google研究院资深研究员。到google不久,他和三个同事们开创了网络搜索反作弊的研究领域,并因此获得工程奖。XX年,他和两个同事共同成立了中日韩文搜索部门。吴军博士是当前google中日韩文搜索算法的主要设计者。在google其间,他领导了许多研发项目,包括许多与中文相关的产品和自然语言处理的项目,并得到了公司首席执行官埃里克.施密特的高度评价。吴军博士在国内外发表过数十篇论文并获得和申请了近十项美国和国际专利。他于XX年起,当选为约翰霍普金斯大学计算机系董事会董事。正是他在信息检索与自然语言处理领域中的一系列工作,使他讲述了我所看到的内容数学之美。看了数学之美,立即联想到了金庸小说中的武林高人,总是把一套大多数人都会的入门功夫使得威力无比,击溃众多敌者。东西放在那,它的威力如何,并键在于使用者,武术如此,数学同样如此。于我而言,语音视别是一类高科技,作为非专业人土,深觉高奥。但看完数学之美之后,顿感惊诧,原来如此深奥东西的解决方法自己也学过,并且理工科读过大学的人都学过,那就是统计学中的条件概率p(a/b),即b事件发生条件下a事件发生的概率。如果s表示一连串特定顺序排列的词w1,w2,wn,换句话说,s可以表示某一个由一连串特定顺序排练的词而组成的一个有意义的句子。现在,机器对语言的识别从某种角度来说,就是想知道s在文本中出现的可能性,也就是数学上所说的s的概率用p(s)来表示。利用条件概率的公式,s这个序列出现的概率等于每一个词出现的概率相乘,于是p(s)可展开为:p(s)=p(w1)p(w2|w1)p(w3|w1w2)p(wn|w1w2wn-1)其中p(w1)表示第一个词w1出现的概率;p(w2|w1)是在已知第一个词的前提下,第二个词出现的概率;以次类推。不难看出,到了词wn,它的出现概率取决于它前面所有词。从计算上来看,各种可能性太多,无法实现。因此我们假定任意一个词wi的出现概率只同它前面的词wi-1有关(即马尔可夫假设),于是问题就变得很简单了。现在,s出现的概率就变为:p(s)=p(w1)p(w2|w1)p(w3|w2)p(wi|wi-1)(当然,也可以假设一个词又前面n-1个词决定,模型稍微复杂些。)接下来的问题就是如何估计p(wi|wi-1)。现在有了大量机读文本后,这个问题变得很简单,只要数一数这对词中的数学应用。现在找文献,搜索期刊一大堆基于数学的专业文献,灰色数学的、模糊数学的、非线性的、系统的,等等,这么多的数学的使用,促进了一大批的文章,但这些数学方法的应用究竟是发现了哪些问题?还是解决了实际问题吗?还是仅发了文章,满足了需求?现实是文章好发,用着难用,解决问题还得传统的方法,那么是这些数学方法不行,还是用的太肤浅,根本没发挥其威力来?如果没有发挥出威力来,那怎么用?怎么发挥?浅谈数学之美众所周知,数学在我们基础教育中占有很大的分量,也是我们的文化中极为重要的组成部分。它不但有智育的功能,也有其美育的功能。“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价。数学中同样存在着能够启迪智慧,陶冶情操的“美”。数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。一、数学概念的简洁美爱因斯坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。数学基本概念、理论或公式所呈现的简单性就是一种实实在在的简洁美。而且这一种简洁美中,往往又包含了物质世界的伟力和完美性,使学生学得既轻松又有味。圆的周长公式:c=2r,就是“简洁美”的典范。世间的圆形有多少?没有人能说清楚。但它们的周长c、半径r,都必须服从刚才所给出的公式,一个如此简单的公式,概括了所有圆形的共同特性,能不令人惊叹不已?在数学中,像周长公式这样形式简洁、内容深刻、作用很大的定理还有许多。如勾股定理:直角三角形两直角边的平方和等于斜边平方。数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。二、符号美、抽象美、统一美数学知识大部分由数字和符号组成,从四则运算到比较大小,还有运算中的大、中、小括号,符号都讲究大小适中、上下左右对称。美好的数字:一是万物之始,一统天下、一马当先;二是偶数,双喜临门、比翼双飞;一去二三里,烟村四五家。亭台六七座,八九十枝花(邵雍;七八个星天外,两三点雨山前(辛弃疾);一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋(纪晓岚)。读了上面的成语、诗,每个人都明显感到,无论是数字的单个应用或重复引用或循环使用,看似毫无感染力的数字竟能表现出各种思想感情。可见世界上一切事物都是相互联系的,作为反映客观事物的量的方面的属性和规律的数学概念、定理、公式及法则等也必然是相互联系的,在一定的条件下处于一个统一体系中。数学美的统一性正体现了数学知识的部分与部分、部分与整体之间的有机联系。三、结构系统的协调美、对称美数学中这种对称性处处可见,如几何中的轴对称、中心对称;代数中多项式方程虚根的成对出现,函数与反函数图像的关系(关于直线yzx对称)等都显现出对称性。对称性能给人美观舒适之感。四边形的形状是多种多样的,但最完美的是正方形,因为它的对称轴比任何四边形都多,而且还是中心对称图形。这些性质使正方形获得了人们的喜爱和广泛应用。如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。人们也喜欢用正方形图案美化环境。比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”因为这两种图形在任何方向上看都是对称的。其实在我们身边随处可见根据对称设计的东西。小到一块橡皮、一只球拍,大到一架飞机、一座建筑。著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。四、奇异美数学的奇异性很容易激发学生的创造欲望,数学奇异美是学生创新的内驱力。而学生在创造性学习活动中又能感受到数学奇异美,两者之间是相互联系相互促进的。数值计算中的反常设想,奇异的分法,美妙的结果都是数学在奇异美,这种奇异美可以揭发学生的创新欲望,培养创新精神,同时在主动探索的过程中能体验到数学奇异美;应用题教学中,学生表现出新奇独特的、不拘一格的方法,正是学习高明的创新思维能力的体现,在此过程中,学生体验了数学美,从而激发了创新欲望;在几何形体知识的教学时,学生所采用的巧妙方法和产生奇异结果,能使学生在惊异中受到美的熏陶,同时使学生产生追求、向往使用巧妙方法和产生奇异结果,培养了学生的创新精神。例如数值计算经常会产生一些奇异而美妙的结果:3412333411223333341112223333333411112222?这一系列美妙的结果显示了一种规律:个3构成的数与其直接后继的积是一个2位数,其前位为,后位为2。数学美的奇异性是客观物质世界奇特性的反映。奇异的结果,很容易激发学生的学习热情,会使人感到兴奋,受到吸引,产生美感,精彩之处能使人心灵震撼、心荡神驰。这些都是激励学生克服疑难,不断创新的极好动力。奇异、新颖的外表,又常常蕴含着独特而又有创新性的内容和思想,能给学习者以启迪,帮助其增强求异、创新的能力。因此,数学奇异美是学生创新的内驱力,而学生在创新过程中又能感受到数学的奇异美,两者之间是相互依存、相互促进的。数学中的美,不是以艺术家所用的色彩、线条、旋律等形象语言表现出来,而是把自然规律抽象成一些概念、定理或公式,并通过演绎而构成一幅现实世界与理想空间的完美图像。只有数学内在结构的美,才更令人心驰神往与陶醉。它的博大精深与简明透彻都给观赏者以巨大的美的感染。如果在学习过程中,我们能与数学家们一起探索、发现,从中获得成功的喜悦和美的享受,那么我们就会不断深入其中,欣赏和创造美。【作者单位:辽中县辽中镇第四小学辽宁】数学中的美摘要:数,是万物之源,数学是我们探究未知的钥匙。所有那些我们认为无比美妙、无比神秘的创造,在逻辑里都可以找到解释。数学是什么?通过计算我们探究世界,通过逻辑我们推断真理。在它的表现形式和运算方式上无不透露着人类智慧的奇妙和大自然鬼斧神工的造化。关键词:数字的美;图形的美;运算方式的美;数字化的世界1、数字中的美众所周知,现代数学中的数分为实数与虚数;而实数又分为有理数和无理数;而有理数又由整数与分数构成。就这样,自然界中所有的数在这里得到统一。而以阿拉伯数字流行的当代社会,这些数字无不透露着它的美妙。先拿虚数来讲,虚数以的形式与实数分别占据着数的一半天下。仅仅靠着一个虚部,就能把所有实数的对立面全都囊括其中,这是一个多么美好的形式,无论是从它的结构,还是从它所代表的意义来讲,它都是无语伦比的。一个虚部的存在,让数在整个空间域上没有丝毫的漏洞,使之达到永恒。回到我们所常用的实数上来说。整数与分数的形式无疑是最漂亮的结果。不管你在做什么题的时候得到的结果总是希望他是整数或者是分数。原因就在于他们的形式简单明了,并且让人有十足的安全感和信服力。这与人类,更确切的说是中国人追求完美的内心是密不可分的。从我们常说的“凑个整”等俗语中不难看出这一点。而整数与分数就让人有这样圆满的感觉,无形之中将它的美深入人心。数学符号的应用无疑在人类进步的历史上的一个重大突破。因为它打破了人所能想象的极限。无限不循环的数的存在让多少数学家头痛不已。而有些形式的无理数让这些冗长的小数点后n位的数字遁形。如2,3,等数字,用简单的数学符号让曾经令人头疼不已的无理数以最简单的形式呈现在人们的眼前,以其独特而神奇的方式成为数中新的宠儿。形式简单而明了的美,更重要的是在其运用方式上和整数分数达到神奇的统一。谈及无理数,不得不谈到一个重要的无理数,那边是。作为圆的周长与直径的比值恒定不变的存在。而这一数的得来也依靠着古今中外的数学家们不懈的努力。【1】人类追求值精确度的旅程从未停止。从刘徽到祖冲之再到法国科学家韦达。从17世纪的鲁道夫再到连锲、贤可土,;最后再到现代的电子计算机。人们对圆周率精确度的追求正是一种智力探索的激励,是人们锲而不舍的精神最求,是一种博大的奋斗之美!2、图形中的美世界中任何都可以物品用最简单的图形平凑而成。在古代人们就已经发现图形之美。六七千年前的新石器时期,陶器上绘制了包括方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 量子信息科学复试面试题及答案
- 城市可持续发展规划设计
- 萤石矿选矿项目可行性研究报告
- 课目一模拟考试题及答案
- 光明电力考试题型及答案
- 考研专业课试题及参考答案(文学类)
- 跨境电商美工面试题及答案指南
- 安全培训徽标课件
- 预制构件在现代住宅建筑施工中的应用
- 现代别墅室内装饰设计思路与应用研究
- GB/T 42695-2023纺织品定量化学分析木棉与某些其他纤维的混合物
- 某培训基地可行性研究报告
- YY/T 1617-2018血袋用聚氯乙烯压延薄膜
- GB/T 39965-2021节能量前评估计算方法
- 尿动力学检查操作指南2023版
- 五星领导人课件
- GB/T 22560-2008钢铁件的气体氮碳共渗
- 《大体积混凝土》课件
- 日本产业发展及文化讲义课件
- 中北大学火炮概论终极版
- 《建设工程文件归档规范》讲义课件
评论
0/150
提交评论