



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘要 摘要 随着电子设备小型化 高频化的不断发展 应用于电磁器件的高频软磁材料 成为一个十分活跃的研究领域 理论和实验表明 c o f e 基软磁性薄膜在获得高 微波磁导率方面优于其它磁性薄膜 而稀土元素的掺杂可从本质上影响c o 基非 晶薄膜的复数磁导率特性 稀土元素的适量加入可提高共振频率 提高其高频软 磁性能 本文中 我们利用射频磁控共溅射方法 在不同的衬底条件下 通过改变 n d 靶溅射功率 制备了一系列t a n d f e c o m t a 纳米薄膜 利用x r a y 衍射 测量了样品的晶体结构 利用原子力显微镜得到了样品的表面形貌 用振动样品 磁强计 v s m 和磁力显微镜 m f m 分别研究了样品的静态磁性和磁畴结构 用 单端带线法测量了样品的高频磁谱 得到以下结论 一 对于衬底温度加热至3 0 0 c 制备出的样品 溅射态及热处理后样品均没有 面内各向异性 样品的饱和磁化强度随n d 含量的增加而减小 矫顽力随n d 含量 的增加而增大 对于n d f e c o 样品 由于旋转各向异性的存在 测得该薄 膜的共振频率约为1 5 g h z 二 对于衬底不加热的样品 研究了其结构和磁性随n d 含量和真空磁场退火温度 t 的变化关系 x 射线 衍射研究表明热处理前的薄膜为非晶态 随着t 的升高 逐渐析出f e c o 纳米晶 随t 的进一步升高 f e c o 纳米晶粒逐渐变大 而且在薄膜中生成了f e c o n d 合金 纳米晶 利用振动样品磁强计研究了纳米薄膜的静态磁性 结果表明 饱和磁化 强度随着n d 含量的升高而降低 而对n d 含量较低的n d f e c o 盯样品研究表明由于垂直各向异性的存在 溅射态及热处理后的薄膜样品均没有面内各向异性样品 表现为条纹畴结构 在n d 含量高于1 3 的样品中 经真空磁场热处理的样品都表现出很好的面 内磁各向异性 在t a n d f e c o 舳 t a 样品中获得了易轴矫顽力1 7 0 e 难轴矫 顽力为2 5 0 e 各向异性场为1 0 2 6 0 e 的优异静态磁性 表明在高频领域具有很 好的潜在应用前景 摘要 a b s t r a c t h i g hf r e q u e n c ys o f tm a g n e t i ct h i nf i l m su s e di ne l e c t r o m a g n e t i cd e v i c e s a r e i n c r e a s i n g l yb e c o m i n gav e r ya c t i v er e s e a r c hf i e l di nd e m a n dw i t hm i n i a t u r i z a t i o n a n dh i g hf r e q u e n c yi ne l e c t r o m a g n e t i cd e v i c e s t h et h e o r e t i c a la n de x p e r i m e n t a l r e s u l t ss h o wt h a tt h ef e c ob a s e ds o f tm a g n e t i ct h i nf i l mi so n eo ft h eb e s tm a t e r i a l s i nh i g hf r e q u e n c ya p p l i c a t i o nf i e l d t h eh i g hf r e q u e n c ys o f tm a g n e t i cp r o p e r t i e so f c o b a s e da m o r p h o u st h i nf i l m sc a nb ei m p r o v e db yt h er a r e e a r t he l e m e n t sd o p i n g i n t h i sw o r k as e r i e so fn a n o m a g n e t i ct h i nf i l m so ft a f e c o n d t aw e r e p r e p a r e db yr fm a g n e t r o ns p u t t e r i n gw i t hd i f f e r e n tp o w e ro fn da n ds u b s t r a t e t e m p e r a t u r e t h es t r u c t u r ea n dt h es u r f a c ep r o f i l eo ft h es a m p l e sw e r ec h a r a c t e r i z e d b yx r a yd i f 厅a c t i o n x r d a n da t o m i cf o r c em i c r o s c o p e a f m r e s p e c t i v e l y t h e m a g n e t i cp r o p e r t i e sa n dt h ed o m a i ns t r u c t u r eo fs a m p l e sw e r es y s t e m a t i c a l l ys t u d i e d b yv i b r a t i n gs a m p l em a g n e t o m e t e r v s 0a n dm a g n e t i cf o r c em i c r o s c o p e m f m r e s p e c t i v e l y m e a n w h i l e t h eh i g h f r e q u e n c yc h a r a c t e r i s t i c so fc o m p l e xp e r m e a b i l i t y w e r eo b t a i n e db yu s i n gt h es h o r t e dm i c r o s t r i pt r a n s m i s s i o n l i n ep e r t u r b a t i o nm e t h o d t h em a i nc o n t e n t sa r eb r i e f l yi n t r o d u c e da sf o l l o w s 错误l 未找到引用源 t h et h i nf i l m sp r e p a r e dw i t hs u b s t r a t et e m p e r a t u r ea t 3 0 0 0 ch a v en o n ei n p l a n em a g n e t i ca n i s o t r o p y t h es a m er e s u l t sw e r eo b t a i n e do n a n n e a l e df i l m s w i t hi n c r e a s i n go fn dc o n t e n t t h es a t u r a t i o nm a g n e t i z a t i o nd e c r e a s e s a n dt h ec e r c i v i t yi n c r e a s e s t h er e s o n a n c ef r e q u e n c yo f1 5g h zo fn d 2 0 f e c o 8 0 s a m p l ei so b t m n e db e c a u s eo ft h er o t a t a b l em a g n e t i ca n i s o t r o p y 错误1 未找到引用源 f o rt h et h i nf i l m sp r e p a r e dw i t hn oh e a t i n gs u b s t r a t e t h es t r u c t u r ea n dm a g n e t i cp r o p e r t i e so ff e c o n df i l m sw i t hn dc o n c e n t r a t i o na n d a n n e a l i n gt e m p e r a t u r ew i t hm a g n e t i cf i e l du n d e rv a c u u mw e r ei n v e s t i g a t e d t h ea s d e p o s i t e df i l m sa r ea m o r p h o u s t h es i z eo ft h ef e c oa n df e c o n dn a n o c r y s t a l l i t e s i n c r e a s e sw i t ht h ei n c r e a s i n go fa n n e a l i n gt e m p e r a t u r e t h er e s u l t sf r o mv i b r a t i n g s a m p l em a g n e t o m e t e rm e a s u r e m e n t r e v e a l e dt h a tt h es a t u r a t i o nm a g n e t i z a t i o n d e c r e a s e sw i t ht h ei n c r e a s i n go fn dc o n c e n t r a t i o n 1 1 摘要 t h en d t 3 f e c o 8 7f i l ms h o w sn o ni n p l a n em a g n e t i ca n i s o t r o p y d u et ot h e e x i s t e n c eo fp e r p e n d i c u l a rm a g n e t i ca n i s o t r o p y w h i c hi sc o n f i r m e db yt h es t r i p e d o m a i no b t a i n e db ym f m a ni n p l a n em a g n e t i ca n i s o t r o p i cp r o p e r t yo ff e c o n df i l m sw a so b t a i n e db y v a c u u ma n n e a l i n gw i t hm a g n e t i cf i e l dw h e nt h en dc o n c e n t r a t i o nh i g h e rt h a n1 3 t h e t a n d 2 0 f e c o s o t as a m p l es h o w st h ec o e r c i v i t yo f2 5 0 ea n d1 7 0 ea te a s ya n d h a r da x e sr e s p e c t i v e l ya n da n i s o t r o p i cf i e l do f1 0 2 6 0 e i n d i c a t i n gt h ep o t e n t i a l a p p l i c a t i o ni nh i g h f r e q u e n c yf i e l d s 1 1 1 原创性声明 本人郑重声明 本人所呈交的学位论文 是在导师的指导下独立进行 研究所取得的成果 学位论文中凡引用他人已经发表或未发表的成果 数 据 观点等 均已明确注明出处 除文中已经注明引用的内容外 不包含 任何其他个人或集体已经发表或撰写过的科研成果 对本文的研究成果做 出重要贡献的个人和集体 均已在文中以明确方式标明 本声明的法律责任由本人承担 论文作者签名 丕基益笠 e l期 理z 圭 三圣 关于学位论文使用授权的声明 本人在导师指导下所完成的论文及相关的职务作品 知识产权归属兰 州大学 本人完全了解兰州大学有关保存 使用学位论文的规定 同意学 校保存或向国家有关部门或机构送交论文的纸质版和电子版 允许论文被 查阅和借阅 本人授权兰州大学可以将本学位论文的全部或部分内容编入 有关数据库进行检索 可以采用任何复制手段保存和汇编本学位论文 本 人离校后发表 使用学位论文或与该论文直接相关的学术论文或成果时 第一署名单位仍然为兰州大学 保密论文在解密后应遵守此规定 论文作者签名 壅丝 导师签名 壶1 日 期 第一章引言 第一章引言 磁性是物质的基本属性 磁性材料的发展 已由无机到有机 固态到液态 宏观到介观 电子磁有序到核磁有序强磁材料 单 n 复合型 显现出优异的磁 性能和综合特性 在其应用上 具有高技术的特征 利用磁性材料做成的磁性元 器件 含磁性部件 组件 具有转换 传递 处理信息 存储能量 约能源等功 能 经过多年的研究开发和生产 磁性材料己经广泛地应用于生产 生活的各个 领域 成为一种基本功能性材料 1 2 磁性材料主要分为三种 软磁材料 硬磁材料和半硬磁材料 其中 对软 磁材料持续不断的研究以及越来越多高性能软磁材料的出现极大地提高了现代 电子器件的性能 3 7 衡量软磁材料的一个重要指标是矫顽力 一般将矫顽力 低于2 0 0 a m l 材料称作软磁材料 当然不同的应用领域对软磁材料的性能要求不 同 但是 通常都希望材料具有高磁导率 高饱和磁化强度膨 低矫顽力成 当应用到高频下时 还要求材料具有高的各向异性场和高的电阻率 以提高材料 的共振频率和降低涡流损失 软磁材料的应用已经有很长的历史 早在2 0 世纪 初 对软磁材料的研究主要是为了提高材料的磁导率 和饱和磁感应强度尽以 及降低材料的矫顽力和磁滞损失 软磁材料这些性能的改善使得电子器件的体积 和重量大大减小 并且极大的提高了其功效 随着电子设备小型化 高频化的不断发展 应用于电磁器件的高频软磁材料 成为一个十分活跃的研究领域 8 1 0 而磁性薄膜是当前高新技术新材料开发中 最活跃的领域 厚度从几纳米到几十微米且具有磁性的功能材料称为磁性薄膜材 料 随着电子元器件向微型化 集成化 高频化方向发展 迫切要求开发出能在 微波频率下仍具有高品质因数的磁性薄膜 理论和实验表明 c o f e 基软磁性 薄膜在获得高微波磁导率方面优于其它磁性薄膜 因此在集成化微磁器件 磁头 材料 抗电磁干扰材料 微波吸波材料研究和应用中受到越来越多的重视 h e r z e r 的理论和实验 1 1 1 2 表明 在磁性金属或合金组成的纳米颗粒系统 1 第一章引言 中存在一个特征长度 交换耦合长度厶 当平均颗粒大小卿颗粒间距 5 之和小 于厶 磁性颗粒将通过颗粒间的区域发生铁磁性相互作用 交换耦合 该耦合 促使颗粒的磁矩趋向平行排列 将单个颗粒的磁晶各向异性平均掉 并补偿退磁 效应 从而大大降低系统的有效磁各向异性 导致矫顽力降低 磁导率提高 获 得很好的软磁性能 所以 颗粒间的交换耦合对于在磁性颗粒膜系统中实现好的 软磁性是至关重要的 r u s s a t 1 3 1 5 等研究得出稀土元素的掺杂可从本质上影响c o 基非晶薄膜的 复数磁导率特性 稀土元素的适量加入可提高共振频率 增加共振峰的宽度 而 现在应用的稀土 3 d 过渡金属化合物n d 2 f e l 4 b s m c 0 5 等主要作为永磁材料 且 都具有单轴磁晶各向异性 而大量的平面型稀土一3 d 过渡金属化合物由于未发现 其应用价值被闲置 本论文的主要研究目的 我们选择n d 掺杂f e c o 基薄膜 并对其进行真空磁 场退火 研究了其结构及静态磁性随退火温度和n d 含量间的关系 得出其优异 的软磁性能是由于实现了纳米颗粒间的交换耦合所致 为进一步研究使其成为很 好的高频使用的磁性材料奠定基础 2 第一章引言 参考文献 1 王军 尤富强 殷俊林 薄膜磁性材料的研究发展和应用 材料导报网刊 2 0 0 6 3 1 3 2 都有为 磁性材料新近进展 p h y s i c s 2 0 0 6 3 5 9 7 3 0 7 3 2 3 g o r d o ne f i s h p r o c e e d i n g so ft h ei e e e v 0 1 7 8 n o 6j u n e1 9 9 0 4 b o z o r t hr m f e r r o m a g n e t i s m n e wy o r k v a nn o s t r a n d 1 9 5 1 5 c h e nc w m a g n e t i s ma n dm e t a l l u r g yo fs o f tm a g n e t i cm a t e r i a l s n e wy o r k d o v e r p u b l i c a t i o n s 1 9 8 6 6 c h i k a z u m is p h y s i c so fm a g n e t i s m m a l a b a r f l k r e i g e r 1 9 7 8 7 c u l l i t yb d i n t r o d u c t i o nt om a g n e t i cm a t e r i a l s r e a d i n g m a a d d i s o n w e s l e y 1 9 7 2 8 1 i k e d al k o b a y a s h il f u j i m o t om m u l t i l a y e rn a n o g r a n u l a rm a g n e t i ct h i n f i l m sf o rg h za p p l o c a t i o n s ja p p lp h y s 2 0 0 2 9 2 9 5 3 9 5 5 4 0 0 9 r a m p r a s a dr e ta 1 m a g n e t i cp r o p e r t i e so fm e t a l l i cf e r r o m a g n e t i cn a n o p a r t i c l e c o m p o s i t e s ja p p lp h y s 2 0 0 4 9 6 1 5 1 9 5 2 9 1 0 y a m a g n c h im e ta 1 m i c r o f a b r i c a t i o na n dc h a r a c t e r i s t i c so fm a g n e t i ct h i n f i l m i n d u c t o r si nt h eu l t r a h i g hf r e q u e n c yr e g i o n ja p p lp h y s 1 9 9 9 8 5 1 1 7 9 1 9 7 9 2 2 1 1 h e r z e r gg r a i ns i z e d e p e n d e n c e o f c o e r c i v i t y a n dp e r m e a b i l i t y i n n a n o c r y s t a l l i n ef e r r o m a g n e t s i e e et r a n sm a g n 1 9 9 0 2 6 5 0 1 3 9 7 1 4 0 2 1 2 h e r z e rgs o f tm a g n e t i cn a n o c r y s t a l l i n e m a t e r i a l s s c rm e t a l lm a t e r 1 9 9 5 3 3 1 0 1 1 1 7 4 1 1 7 5 6 1 3 r u s s a tj e ta 1 f r e q u e n c y d e p e n d e n tc o m p l a xp e r m e a b i l i t y i n r a r e e a r t h s u b s t i t u t e sc o b l t n o n m a g n e t i ct r a n s i t i o nm e t a ls o f tf e r r o m a g n e t i ca m o r p h o u s t h i nf i l m s ja p p lp h y s 1 9 9 3 7 3 3 1 3 8 6 1 4 r u s s a tj e aa 1 as t u d y o fc o m p l e xp e r m e a b i l i t yi nr a r ee a r t h s u b s t i t u t e d t o b i t n o n m a g n e t i ct r a n s i t i o nm e t a la m o r p h o u st h i nf i l m s ja p p lp h y s 1 9 9 3 7 3 1 0 5 5 9 2 1 5 1 s u r a nge ta 1 s t a t i c a n dd t n a m i cm a g n e t i cp r o p e r t i e so f c o z 0 1 0 0 x r e x a m o r p h o u st h i nf i l m s j a p p lp h y s 1 9 9 3 7 3 1 0 5 7 2 1 3 第二章理论基础 第二章理论基础 2 1 纳米晶软磁材料起因 h e r z e r 扩展了h l b e n 等人为了解释非晶态合金的磁各向异性而提出的随机 各向异性理论模型 较成功地解释了纳米晶软磁材料拥有优异软磁性能的现象 2 1 1 非晶中的随机各向异性模型 大多数非晶铁磁体呈现软磁性 它们的饱和磁化场凤和矫顽力风通常低于 相应成分的晶态材料 按理说 非晶态材料由于内部原子排列呈现长程无序 磁 晶各向异性不存在 然而 在一些过渡金属一类金属非晶态合金中仍可观察到明 显的局域各向异性 这种磁各向异性主要来自制备过程引起的局域应变 可通过 磁致伸缩而和磁化强度相耦合 实验表明 即便是磁致伸缩趋近于零的非晶态合 金也有可能由于制备过程中择优各向异性引起原子尺度的有序化或者来自与成 分不均匀性有关的静磁效应而存在某种局域各向异性 它们的局域各向异性常数 一般为1 0 1 1 0 3j m 3 一般可通过适当退火而减小 h l b e n 等人 1 提出 如果非晶体中交换相互作用强于局域各向异性的作用 则原子磁矩不再沿局域各向异性的易磁化轴取向 而是在空间围绕一宏观的有效 各向异性方向连续地改变取向 系统单位体积的能量为 f 一彳 2 陴产一封1 组 式中 聊 是局域磁化矢量 尥是饱和磁化强度 a 是交换劲度常数 简称 交换常数 岛是局域单轴各向异性常数 玎 是局域各向异性的易磁化轴的单 位矢量 该公式右边的第一项为交换作用能 第二项是局域各向异性能 假定局 域易磁化方向一 厂 发生明显改变的最小距离为d 并定义磁化矢量的实际取向发 4 第二二章理论媾础 生明显改变的最小特征长度为交换耦合长度工 在非晶体中 d 接近于原子间 距 而 怯大致为磁畴宽度 如果l 旺 d 则在以l 懿为边长的立方体的体积范 围内 和随机步行原理 2 一样 将始终有一个由统计涨落决定的最易磁化方向 存在 理论指出 这一系统的平均各向异性能密度k 犯e i 可以写为 l r 2 l a 2 2 而平均交换作用能密度 巴犯 虿a 2 3 总能量密度 f f 二 二 上 由筹 可得 的有效长度 t 兰生 2 4 9 k d a k 2 k 乙4 请注意 上式只有当k 2 较小 即l x d 时才能成立 于是可得耦合体积 能的最小值为 一一等 2 5 在这里 厄 是厶i 为无限长时耦合能的基准振幅 和磁化相关的各向异性 能的空f j 振幅相当 因此矫顽力正比于尼 的绝对值 对于非晶铁磁体而言 由 于 2 5 式中参数的不确定性 使得该模型未能得到验证 然而 由于纳米晶 材料的发展和应用 这个模型的重要性和影响远远超过了当初a l b e n 等人发表论 文的时候 2 1 2 纳米晶中的随机各向异性模型 一 h e r z e r 模型 3 4 1 5 第二章理论基础 从铁磁学可知 对于一颗粒集合体 如果颗粒尺寸较大 大于单畴临界尺寸 每个颗粒中的磁化矢量将指向颗粒中的易磁化方向 而且会出现磁畴 每个磁畴 中原子或离子磁矩将由于交换相互作用而平行排列 颗粒集合体的磁化过程主要 由磁晶各向异性k 1 和应力各向异性如决定 一般 为了得到优异软磁性能 要求局 厶 s 很小或趋近于零 当颗粒尺寸小于单畴临界尺寸时 颗粒处于单畴状态 颗粒内所有的磁矩平 行取向 如果这一颗粒集合体中颗粒间距同时变小 那么单畴颗粒之间的铁磁交 换作用将越来越明显 为了降低交换能 不同颗粒之间的交换作用将迫使各颗粒 中的磁矩倾向于平行排列 因此 造成磁化矢量不再沿各个颗粒自己的易磁化方 向取向 结果 对磁性起决定作用的也不再是原先每个颗粒的磁晶各向异性 而 是有效各向异性 该有效各向异性应该是对若干个颗粒求平均的结果 比蜀要 小得多 由此推论 微细晶粒集合体的磁性强烈地依赖于局域各向异性能和铁磁 交换能的两者的竞争 区分上述两种磁性晶粒集合体情况的分界线应由交换耦合长度 给出 跬 2 6 式中 彳是交换劲度系数 在磁畴理论中 是衡量畴壁厚度大小的基本 参数 等于磁化矢量取向发生明显改变的最小特征尺度 对于较大的晶粒 如图2 1 a 所示 口是平均易轴和该晶粒磁化矢量之间的 夹角 在 范围内 晶粒内的磁化矢量沿易磁化方向取向 磁晶各向异性常数 墨有较大的振幅 当晶粒尺寸减d nd 由 个晶粒的平均涨落振幅所决定 其中 第f 个晶粒的磁晶各向异性能为 矿 e e s i n 2 p a i 2 7 y 式中 秒是平均易轴和该晶粒磁化矢量之间的夹角 g 是各个晶粒内的易轴 和平均易轴的夹角 由于各晶粒的易轴是随机分布的 因此耦合体积内磁晶各向 6 第二章理论基础 异性能的振幅由f 式得出 届 比 大晶粒时的相应振幅要小得多 口 d l a d 为晶粒大小 p d l 岛 蚰 塑 嗽 宦 坤 疃 韬 d e 露最 或 图2 1 对于具有单轴各向异性对称性的传统材料 d 工 i 和纳米晶材料 d 工 x 的磁晶各向异性能的变化 5 h e r z e r 发展了a l b e n 等人的非晶体随机各向异性模型 解释了纳米晶合金的 软磁行为 根据图2 1 所示 考虑晶粒尺寸为d 晶粒的磁晶各向异性常数为 局 晶粒之间存在铁磁耦合 磁矩随机取向的微细晶粒集合体 对于纳米晶的情 况 交换相关长度为 a 7 2 9 第二章理论基础 为简单计 考虑边长为l 的立方体 则在耦合体积y 一砭内所包含的晶 粒数为 每 3 所以 影响磁化过程的有效各向异性常数 2 1 0 一 面9 1 k i d 2 11 综合 2 5 2 6 两式 可得 0 5 j m 3 比b c cf e 8 0 s i 加晶粒的硒减小了三个数量级 二 扩展随机各向异性模型 2 4 5 从h e r z e r 的纳米晶随机各向异性模型可以看出 这是一种单相模型 它假 定纳米晶粒相中的磁晶各向异性常数局和交换常数彳起着重要作用 实际上 在室温下 纳米晶软磁合金由口 f e s i 晶粒相和残余非晶相两个铁磁性相所组成 其次 从 2 6 2 7 式可知 h e r z e r 模型以系统只存在磁晶各向异性为前 提 没有考虑软磁材料中经常出现的感生各向异性的情况 为了阐明这两个因素 的影响 许多人提出了扩展的随机各向异性模型 关于残存非晶相的影响 h e r z e r 曾修正了 2 1 2 式 d 哗 d 32 2 1 3 a 2 这里的k 是组成相的体积分数 对于口 f e s i 晶态相和残存非晶相组成的两 相合金 如忽略非晶相的磁晶各向异性 则上式可写为 8 第二章理论基础 1 一2 d 6 2 1 4 彳 式中 是非晶相的体积分数 该式反映了斌l 被非晶相稀释的效应 然而 假定纳米晶相和非晶相具有同样的交换常数 则还存在一个非晶相较低的居里温 度死印的影响问题 h e m a n d o 等人 2 假定晶粒之间的交换场在非晶区中是呈指 数衰减的 并引入一唯象参数y 将非晶区中的有效交换常数写为ya 即 a 一el 式中 a 是非晶区的厚度 删是非晶区的交换相关长度 他们用这 一模型并通过考虑磁弹性效应成功地解释了纳米结构化早期的磁硬化 s u z u k i 和c a d o g e n 则提出了另一种扩展模型 5 6 指出 如果纳米晶相和非晶相的交 换常数分别为彳a 彳锄 可得有效各向异性常数的公式 有效各向异 性常数应为 有关 日 醴 2 1 8 a l o m 世m 2 2 1 8 b 段2 素 屺j 的j 按照h e 亿e r 模型 有效各向异性常数d r 随晶粒尺寸的六次幂d 6 而变化 将 2 1 2 式代入上式 得 耻筹 2 1 9 a 陆 p u l 比7 0 m i a 一3 2 1 9 b 以2 1 面r 心 埘 图2 2 表明 当晶粒尺寸小于4 0a m 时 纳米晶合金的总确实具有d 6 依 索负性 四 超顺磁性和交换相互作用 我们必须把新型纳米晶合金所具有的低矫顽力和由超顺磁现象所引起的矫 顽力的减小区分开来 9 对软磁材料而言 一旦出现超顺磁性 只有施加大的 磁化场才能造成磁化强度的明显变化 即材料的磁导率将变得相当小 显然 这 不是我们所希望的 首先估计一下出现超顺磁性的临界尺寸 设想一微细颗粒集 合体 磁性颗粒的尺寸很小 颗粒处于孤立状态 颗粒与颗粒之间不存在相互 作用 当这些颗粒的体积y 足够小时 其磁晶各向异性能局y 有可能和热运动 能k t 七为玻尔兹曼常数 差不多相等 每个颗粒的磁化矢量将不可能沿该颗粒 的易磁化方向取向 而是有可能因热激活而克服磁晶各向异性能垒a e 在不同 的易磁化方向之间来回反转 如果各个颗粒的易磁化轴是随机分布的 则外加磁 场为零时磁矩运动的图象和顺磁性相似 不同的是正常顺磁性中每个原子或离子 1 1 第二章理论基础 的磁矩只有几个玻尔磁子的大小 而现在的这个微细颗粒集合体中司能包含看磁 矩始终平行排列的大量原子或离子 总磁矩可能超过1 0 4 个玻尔磁子 这样一些颗粒的集体磁性行为称为超顺磁性 根据超顺磁性理论 磁矩的运 动应满足下列公式b o i 厶p 詈他2 式中 t 是弛豫时间 知是频率因子 f o 1 0 9h z 如果出现超顺磁性的临界 颗粒体积为 同时按惯例取t 1 0 0s 则从上式可得 y 2 5 k t p k 1 如果将颗粒看成是直径为岛的小球 吻一1 6 棚p 3 则出现超顺磁性的临界 直径为 d p 2 2 1 对f e c o 颗粒 取t 3 0 0k 局 2 5 1 0 5j m 3 可以算得协 1 0n l n 这 就是说 在室温下 如果孤立f e c o 颗粒的直径在1 0 姗左右或更小 则它们将 呈现超顺磁性 在我们所做的纳米颗粒膜中 经过3 0 0 热处理后 f e c o 晶粒 直径约为9 r i m 小于见 应该呈现超顺磁性 即剩磁和矫顽力都应趋于零 同 时磁化时需要很高的磁化场才能趋近饱和 而实验表明 室温下 t a n d f e c o 州 t a 纳米颗粒膜并不是超顺磁体 很明显 作用于颗粒间的交换 作用仍足够大 可以抑制超顺磁性的出现 2 2 软磁材料的动态磁化机制 1 1 1 2 2 2 1 磁滞回线的形状 1 2 第 二章理论基础 l 图2 3 一个软磁材料样品的静态磁滞回线示意图 对于饱和磁感应强度 磁导率 矫顽力和磁滞损失 都可以从材料的磁滞回 线来得到 图2 3 是一个软磁材料样品的磁滞回线示意图 图中也是矫顽力 凤是饱和磁感应强度 尻是剩余磁感应强度 是磁导率 在铁磁材料中 每个磁性原子的磁性都可以用一个磁矩来代替 由于量子交 换作用 相邻原子的磁矩会发生耦合 在居里温度以下 交换作用能可以有效地 克服热扰动能 从而使磁矩平行排列 即发生自发磁化 总的磁化强度m 就是 各个原子磁矩的矢量和 并且 b 一卢o h 膨 2 2 2 这里伽 4 p 1 0 7 吲m 是真空磁导率 对于软磁材料 m 很容易随何而变化 所 以其相对磁导率 一b 比o h 2 2 3 比较高 在有些材料中可以达到1 0 6 甚至更高的量级 对于应用在传感器 高频和低频变压器 磁性放大器等领域的软磁材料 要 求材料的磁导率 饱和磁感应强度 剩磁和居里温度要高 磁滞损失要低 也就 是说 磁滞回线所包围的面积要小 如图2 3 所示 2 2 2 磁畴和畴壁移动 1 3 第 二章理论基础 图2 4 铁磁材料中1 8 0 b l o c h 畴肇中原子磁偶极矩的转动 铁磁材料是由许多磁畴组成 由于铁磁性相互作用使得畴内的原子磁矩平行 排列 即自发磁化 其自发磁化强度表示为m 分开两个畴之间的界面区域称 为畴壁 在一个样品中 畴的体积 磁弹性以及畴壁能决定了样品中磁畴的数量 和大小 在软磁材料中 磁化曲线的形状主要由畴壁的运动决定的 单位面积的畴壁能 可以用交换作用能 k 和各向异性能腿表示 即 y 山l k 2 2 4 在这里 揿为 k 譬 c 旺列 式中k 是单位体积的各向异性能 a w 是畴壁的横截面积 d w 是畴壁宽度 6 w n a 2 2 6 式中a 是晶格常数 n 是发生畴壁移动时的畴壁面数 所有 舢n i 以进一步表 示为 一警 k 口 2 2 7 式中的第一项表示在1 8 0 0 畴壁中磁矩转动时消耗的交换作用能 如图2 4 所示 将舢微分后可得 昙监o n e 小一掣n a 墨 2 2 8 口 1 第二章理论基础 即 n f 2 2 9 对于f e 可计算得 p 3 0 0 根据交换劲度常数彳瓴 畴壁宽度如可表示为 小兀压 畴壁的移动与铁磁性交换作用有关 铁磁性交换作用长度 坯可表示为 k 一 式中腿为饱和磁化强度 伽为真空磁导率 2 2 3 复数磁导率 2 3 0 2 3 1 在静态磁化中 由于不需要考虑磁化的时间问题 在一定大小的外磁场强度 日作用下 铁磁体内便产生相应大小的磁感应强度曰 所以 表征静态磁特性的 磁导率 是实数 在弱交变磁场作用下 铁磁体内的磁感应强度曰和磁场强度h 均随时间变化 它们之间不仅有振幅大小的关系 还有相位的关系 都可以用复数表示 它们的 比值称为复磁导率 引入复磁导率可以同时反映b 和日之间的振幅和相位 复 磁导率是表征铁磁体动态特性的一个物理量 可表示为 厅 去 2 32 tp 胪万叫 心 式中西具有一般复数的表达形式 l 为复磁导率的实部 为复磁导率的虚部 复磁导率厨的表达式表明 在动态磁化过程中 铁磁体内既有能量的存储 即含 的部分 又有能量的损耗 即含 a 的部分 所以复磁导率的实部 a 又叫弹 性磁导率 它相当于静态磁化时的磁导率 是一个实数 它决定于单位体积铁磁 体在动态磁化过程中的磁能存储量 其大小为 h 2 复磁导率的虚部i t y n t t 1 5 第二章理论基础 粘滞磁导率 它代表单位体积的铁磁体在交变磁场中每磁化一周的磁能损耗 其 大小为删 卢 匪 在交变磁场中 b 落后于h 是由于损耗引起的 故b 落后于h 的相位差d 由称为损耗角 可以从磁化强度的运动方程 l a n d a u l i f s h i t z g i l b e r t 方程 计算出微波磁导 率 旷及理论共振频率 1 3 l a n d a u l i f s h i t z g i l b e r t 方程 7 警 y 丽 f i m 1 f l 讷 其中 a 是样品总的磁场强度 仅 阻尼系数 假设一小的交变磁场h x 轴方向传播 则此小的交变场可表示为f a t 一 h 0 0 由于样品磁各向异性的 则 样品内的总磁场 a a k h 一 h d 一 h h k 一4 r i m 2 3 4 总磁化强度 藏一觑 面一 m m m m 2 3 5 制蒜升爿邕一强 由于蚓 i a i 故防i 肛 i 且忽略二阶小量 则 c o f n m x 雌 懈 m x h k m s h 吨x m s 州2 第二章理论基础 i l o m x 一 4 州m z m s y m z h k a y m x h k i e t y nx m s i i o m y m h k y h m s4 4 3 r a y m z m s a y m h k 解之 得 m 皇 塑 l 坚竺 堡 坚 兰垩g 竖 丝竺 1 1 1 c t 2 y 2 h k 2 一 o o 一4 j r i a y m y h k i a m 4 n 1 0 2 y m 则 x m x h 雨群h 驾篱器篙器瓮 丽 吲 1 a 2 y 2k 2 一 1 1 一4 砸叫m y hk i 0 o 4 兀 1 a 2 y m 于是 x 彳吣c 坐嗜筹裟裳蒜等盖产鳢 2 3 6 x 州 铺箐等岩慕 2 3 7 其中 一 扫刁面而 2 3 8 又p 一1 4 a x 和 一慨 则可得到 p 小铆2 m s xc 型哔筹筹祭蒜拦盖铲咝 2 3 9 一删 铩等等揣戮2 斋 亿4 茸中 i 为其桅 颢塞 y 为薄磁比 m s 为饷和磁化隅席 h 为各向异性场 1 7 第二章理论基础 参考文献 1 a l b e nr b e c k e rjj c h imc ja p p lp h y s 1 9 7 8 4 9 3 1 6 5 3 2 h e m a n d oav f i z q u e zm k u l i kt e ta 1 p h yr e v 1 9 9 5 b 5 1 6 3 5 8 1 3 1 h e r z e rg i e e et r a n sm a g 1 9 8 9 2 5 5 3 3 2 7 1 9 9 0 2 6 5 1 3 9 7 4 1 h e r z e rgs c r i p t am e t a l lm a t e r 1 9 9 5 3 3 5 1 7 4 1 5 s u z u k ikc a d o g e njm p h y sr e v 1 9 9 8 b 5 8 0 2 7 3 0 6 s u z u k il c a d o g e njm ja p p lp h y s 1 9 9 9 8 5 8 4 4 0 0 7 1 s u z u k ikc a d o g e njm s a h a j w a l l av e ta 1 ja p p ip h y s 1 9 9 6 7 9 8 5 1 4 9 8 1 s u z u k ikm a k i n o 八e ta 1 ja p p lp h y s 1 9 9 1 7 0 1 0 6 2 3 2 9 张世远 新型纳米晶软磁合金及其应用 磁性材料与器件 2 0 0 4 年 1 0 r c 奥汉德利 美 现代磁性材料原理和应用 化学工业出版社 1 1 姚东升兰州大学博士学位论文2 0 0 8 f 1 2 杨啸林兰州大学博士学位论文2 0 0 5 1 3 s h i h u ig e d o n g s h e n gy a o e l a 1 ja p p lp h y s 2 0 0 7 4 0 3 6 6 0 1 8 第三章样品的制备与测试 第三章样品的制备与测试 采用磁控溅射方法制备了一系列n d 含量不同的t a n d f e c o 卅 t a 样品 利用x 射线衍射仪 x r d 和原子力显微镜 a f m 研究了样品的结构和微结构 样品的成分由能谱仪 e d s 进行确认 利用振动样品磁强计 v s m 测得了样品 的宏观磁性 利用磁力显微镜 m f m 观察了样品的磁畴结构 利用网络分析仪 使用微带传输线法测量了样品的高频磁性 薄膜厚度由台阶仪测得 3 1 样品的制备 我们采用射频磁控溅射方法在s i 基片上制各了一系列t a n d f e c o 州 t a 薄膜样品 磁控溅射是一种低温高速沉积技术 用其制备的薄膜膜层致密 针孔 少 纯度高 膜的附着力强 厚度均匀 因此在制备薄膜时被广泛采用 磁控溅 射包括射频磁控溅射和直流磁控溅 3 1 1 磁控溅射的基本原理 用几十电子伏或更高动能的荷能粒子 大多数是由电场加速的正离子 轰 击材料表面 使其原子或分子获得足够的能量而溅出进入气相 这种溅出的 复 杂的粒子散射过程称为溅射 1 按照溅射理论的级联碰撞模型 2 如图3 1 所示 当入射离子与靶原子发生碰撞时把能量交给靶原子 在准弹性碰撞中 通过动量 转移导致晶格原子的撞出 形成级联碰撞 当级联碰撞延伸到靶表面 使表面粒 子的能量足以克服结合能时 表面粒子逸出成为溅射粒子 溅射粒子淀积到基底 或工件表面形成薄膜的方法称为溅射镀膜法 溅射镀膜是基于荷能粒子轰击靶材 时的溅射效应 整个过程都是建立在真空和辉光放电的基础上 1 9 第三章样品的制备与测试 离子 图3 1 溅射的级联碰撞模型 靶表面 对于直流溅射 在靶和基底之间加上电压 因某些原因存在于气体中的少 量电子在电场力的作用下被逐渐加速 加速的电子与氩气原子相碰撞 使其电离 形成正离子和电子 这些电离出来的电子又被加速而使更多的氩气原子电离 电 离出的正离子被加速后轰击靶材 与靶原子发生级联碰撞而使靶表面粒子逸出 沉积在基底上便形成薄膜 图3 2 射频溅射原理图 直流溅射只能沉积金属膜 而不能沉积绝缘介质膜 其原因是由于 当溅 射绝缘介质靶材是 轰击绝缘介质靶材表面的正离子和电荷无法中和 于是靶面 电位升高 外加电压几乎都加在靶 绝缘介质 上 极间的粒子加速与电离就会 变小 以至于溅射不能维持 如果在靶和基底之间加一射频电压 那么溅射将可 以维持 这是因为在溅射靶处于射频场的负半周时 由于电子的质量比离子的质 量小得多 故其迁移率很高 仅用很短的时间就能飞向靶面 中和其表面积累的 2 0 第三章样品的制备与测试 正电荷 与此同时 在靶面积累了大量的正电荷 这样 当处于射频场的正半周 时也吸引离子轰击靶材 这样 在一个周期内正离子和电子可以交替地轰击靶子 从而实现溅射绝缘介质材料的目的 射频 r f 溅射的原理如图3 2 一般溅射镀膜的最大缺点是溅射速率较低 与蒸发速率相比要低一个数量 级 而磁控溅射正好弥补了这一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年吉林省特岗教师招聘考试职位表模拟试卷完整答案详解
- 2025黑龙江东北林业大学党委学生工作部校内招聘4人模拟试卷及答案详解(必刷)
- 2025年泰和县上圯水厂面向社会公开招聘模拟试卷附答案详解(黄金题型)
- 2025春季中国有研科技集团有限公司校园招聘模拟试卷及一套答案详解
- 2025年国网陕西省电力有限公司第二批录用人选模拟试卷及答案详解(典优)
- 2025年湖南邵阳城步县事业单位选调28人考前自测高频考点模拟试题及参考答案详解
- 2025湖南省怀化学院高层次人才公开招聘100人模拟试卷及答案详解(易错题)
- 2025吉林省矿业集团有限责任公司遴选31人考前自测高频考点模拟试题完整参考答案详解
- 2025年中国电信江苏公司春季校园招聘笔试题库历年考点版附带答案详解
- 2025年河北雄安新区新建片区学校公开选聘校长及骨干教师13人考前自测高频考点模拟试题参考答案详解
- 大圆满前行考试题及答案
- 2025贵州毕节威宁自治县面向社会招聘城市社区工作者17人考试参考试题及答案解析
- 建筑工地垃圾清理与处理方案
- 修井现场安全培训内容课件
- 2022届辽宁省大连市高三一模语文试题
- 企业后备干部培养及管理办法
- RB/T 089-2022绿色供应链管理体系要求及使用指南
- 某某集团年度经营计划编制指引
- 山区道路施工施组
- 数控heidenhain说明书TNC直接提供两种加工孔模板的循环
- GB/T 42453-2023信息安全技术网络安全态势感知通用技术要求
评论
0/150
提交评论