




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题组训练85 n次独立重复试验与二项分布1下列表中能成为随机变量x的分布列的是()答案c2袋中有大小相同的红球6个、白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球次数为随机变量,则的可能值为()a1,2,6 b1,2,7c1,2,11 d1,2,3,答案b解析除白球外,其他的还有6个球,因此取到白球时取球次数最少为1次,最多为7次故选b.3若某一随机变量x的概率分布如下表,且m2n1.2,则m的值为()x0123p0.1mn0.1a.0.2b0.2c0.1 d0.1答案b解析由mn0.21,m2n1.2,可得mn0.4,m0.2.4已知随机变量x的分布列为p(xk),k1,2,则p(2x4)等于()a. b.c. d.答案a解析p(2x4)p(x3)p(x4).5若随机变量x的分布列为x210123p0.10.20.20.30.10.1则当p(xa)0.8时,实数a的取值范围是()a(,2 b1,2c(1,2 d(1,2)答案c解析由随机变量x的分布列知:p(x1)0.1,p(x0)0.3,p(x1)0.5,p(x2)0.8,则当p(xa)0.8时,实数a的取值范围是(1,26袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为x,则x的所有可能取值个数为()a25 b10c7 d6答案c解析x的可能取值为123,134,14523,15642,25734,358,459.7甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得1分)若x是甲队在该轮比赛获胜时的得分(分数高者胜),则x的所有可能取值是_答案1,0,1,2,3解析x1,甲抢到一题但答错了;x0,甲没抢到题,或甲抢到2题,但答时一对一错;x1时,甲抢到1题且答对或甲抢到3题,且一错两对;x2时,甲抢到2题均答对;x3时,甲抢到3题均答对8已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球设为取出的4个球中红球的个数,则p(2)_答案解析可能取的值为0,1,2,3,p(0),p(1),又p(3),p(2)1p(0)p(1)p(3)1.9一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同)(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为x,求随机变量x的分布列与数学期望答案(1)(2)解析(1)设“取出的4张卡片中,含有编号为3的卡片”为事件a,则p(a).所以取出的4张卡片中,含有编号为3的卡片的概率为.(2)随机变量x的所有可能取值为1,2,3,4.p(x1),p(x2),p(x3),p(x4).则随机变量x的分布列是x1234p故随机变量x的数学期望e(x)1234.10在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值x元的概率分布列答案(1)(2)略解析(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率p.(或用间接法,即p11)(2)依题意可知,x的所有可能取值为0,10,20,50,60(元),且p(x0),p(x10),p(x20),p(x50),p(x60).所以x的分布列为:x010205060p11.在10件产品中,有3件一等品,4件二等品,3件三等品从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数x的分布列;(2)取出的3件产品中一等品件数多于二等品件数的概率答案(1)略(2)解析(1)由于从10件产品中任取3件的结果数为c103,从10件产品中任取3件,其中恰有k件一等品的结果数为c3kc73k,那么从10件产品中任取3件,其中恰有k件一等品的概率为p(xk),k0,1,2,3.所以随机变量x的分布列是x0123p(2)设“取出的3件产品中一等品件数多于二等品件数”为事件a,“恰好取出1件一等品和2件三等品”为事件a1,“恰好取出2件一等品”为事件a2,“恰好取出3件一等品”为事件a3.由于事件a1,a2,a3彼此互斥,且aa1a2a3,而p(a1),p(a2)p(x2),p(a3)p(x3),取出的3件产品中一等品件数多于二等品件数的概率为p(a)p(a1)p(a2)p(a3).12(2017大连质检)某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为,.(1)求该高中获得冠军个数x的概率分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分y的概率分布列答案(1)略(2)略解析(1)由题意知x的可能取值为0,1,2,3,则p(x0)(1)(1)(1),p(x1)(1)(1)(1)(1)(1)(1),p(x2)(1)(1)(1),p(x3).x的分布列为x0123p(2)得分y5x2(3x)63x,x的可能取值为0,1,2,3.y的可能取值6,9,12,15.则p(y6)p(x0),p(y9)p(x1),p(y12)p(x2),p(y15)p(x3).y的分布列为y691215p13.(2018河南豫北名校联盟)中国新歌声是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出每期节目有四位导师参加导师背对歌手,若每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练已知某期中国新歌声,6位选手演唱完后,四位导师为其转身的情况如下表所示:导师转身人数(人)4321获得相应导师转身的选手人数(人)1221现从这6位选手中随机抽取2人考查他们演唱完后导师的转身情况(1)求选出的2人导师为其转身的人数和为4的概率;(2)记选出的2人导师为其转身的人数之和为x,求x的分布列及数学期望e(x)答案(1)(2)e(x)5解析(1)设6位选手中,a有4位导师为其转身,b,c有3位导师为其转知,d,e有2位导师为其转身,f只有1位导师为其转身从6人中随机抽取两人有c6215种情况,其中选出的2人导师为其转身的人数和为4的有c22c21c113种,所求概率为p.(2)x的所有可能取值为3,4,5,6,7.p(x3);p(x4);p(x5);p(x6);p(x7).x的分布列为x34567pe(x)345675.1由于电脑故障,使得随机变量x的分布列中部分数据丢失(以“x,y”代替),其分布列如下:x123456p0.200.100.x50.100.1y0.20则丢失的两个数据x,y依次为_答案2,5解析由于0.200.10(0.1x0.05)0.10(0.10.01y)0.201,得10xy25,又因为x,y为正整数,故两个数据依次为2,5.2一实验箱中装有标号为1,2,3,3,4的5只白鼠,若从中任取1只,记取到的白鼠的标号为y,则随机变量y的分布列是_答案y1234p解析y的所有可能值为1,2,3,4.p(y1),p(y2),p(y3),p(y4).y的分布列为y1234p3.一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋中任取4个球(假设取到任何一个球的可能性相同)(1)求取出小球中有相同编号的概率;(2)记取出的小球的最大编号为x,求随机变量x的分布列答案(1)(2)略解析(1)设“取出的小球中有相同编号的”为事件a,编号相同可分成一个相同和两个相同,则p(a).(2)随机变量x的可能取值为:3,4,6.p(x3),p(x4),p(x6),随机变量x的分布列为:x346p4.一袋中装有10个大小相同的黑球和白球已知从袋中任意摸出2个球,至少得到1个白球的概率是.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为x,求随机变量x的分布列答案(1)5个(2)略解析(1)记“从袋中任意摸出2个球,至少得1个白球”为事件a,设袋中白球的个数为x,则p(a)1,得到x5.故白球有5个(2)x服从超几何分布,p(xk),k0,1,2,3.于是可得其分布列为x0123p5.(2015福建,理)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为x,求x的分布列和数学期望答案(1)(2)分布列略,e(x)解析(1)设“当天小王的该银行卡被锁定”的事件为a,则p(a).(2)依题意得,x所有可能的取值是1,2,3.又p(x1),p(x2),p(x3)1.所以x的分布列为x123p所以e(x)123.6某中学动员学生在春节期间至少参加一次社会公益活动(下面简称为“活动”)该校合唱团共有100名学生,他们参加活动的次数统计如图所示(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率;(3)从合唱团中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列答案(1)2.3(2)(3)略解析根据统计图知参加活动1次、2次、3次的学生数分别为10,50,40.(1)该合唱团学生参加活动的人均次数为2.3.(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率p.(3)的取值为0,1,2,的分布列为012p7.(2013重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列答案(1)(2)略解析设ai表示摸到i个红球,bj表示摸到j个蓝球,则ai(i0,1,2,3)与bj(j0,1)独立(1)恰好摸到1个红球的概率为p(a1).(2)x的所有可能的值为:0,10,50,200,则p(x200)p(a3b1)p(a3)p(b1),p(x50)p(a3b0)p(a3)p(b0),p(x10)p(a2b1)p(a2)p(b1),p(x0)1.综上知x的分布列为x01050200p8.某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货将频率视为概率(1)求当天商店不进货的概率;(2)设x为第二天开始营业时该商品的件数,求x的分布列和均值答案(1)(2)解析(1)p(“当天商店不进货”)p(“当天商品销售量为0件”)p(“当天商品销售量为1件”).(2)由题意知,x的可能取值为2,3.p(x2)p(“当天商品销售量为1件”);p(x3)p(“当天商品销售量为0件”)p(“当天商品销售量为2件”)p(“当天商品销售量为3件”).故x的分布列为x23px的均值为e(x)23.9设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1.(1)求概率p(0);(2)求的分布列,并求其数学期望e()解析(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8c32对相交棱,因此p(0).(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故p().于是p(1)1p(0)p()1.所以随机变量的分布列是01p()因此e()1.10(2018贵州遵义联考)2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克)下表是从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广播媒体后期制作面试模拟题及解析
- 2025年机械设计试题及答案解析
- 2025年心电图师面试高频考点及模拟题
- 机电行业职业知识培训课件
- 2025年国际物流运营管理师资格考试试题及答案解析
- 2025年市政安全操作规范试题含答案
- 2025年机器人包装行业应用面试题
- 2025年宠物克隆师中级考试高频题预测
- 课件不允许录屏的原因
- 2025年高考真题-山东省高考真题地理试卷(含答案)
- 初中七年级数学备课组科研合作计划
- 《人工智能应用基础》 完整课件(共十个模块-上)
- 职业技术学院旅游管理专业《旅行社经营与管理》课程标准
- 奶茶店股份合作合同协议
- 2025-2030中国空气粒子计数器行业市场发展趋势与前景展望战略研究报告
- 立杆方法分类普通电杆的组立系列课件
- 四年级音标试卷及答案
- 学校食堂运营管理职责与分工
- 2025云南师范大学辅导员考试题库
- BEC商务英语(中级)阅读模拟试卷11(共405题)
- 语文课堂教学目标设计“四出发”
评论
0/150
提交评论