




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
至善教育宁波分部 初一专题复习一元一次方程单元复习与巩固一、知识网络二、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程的概念:只含有一个未知数,并且未知数的次数都是1的方程叫做一元一次方程。 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a0)。2、方程的解:使方程左右两边的值相等的未知数的值叫做方程的解要点诠释:(1)一元一次方程必须满足的3个条件: 只含有一个未知数; 未知数的次数是1次; 整式方程(2)判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等知识点二:方程变形解方程的重要依据1、等式的基本性质(也叫做方程的同解原理):等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。即:如果,那么;(c为一个数或一个式子)。等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。即:如果,那么;如果,那么2、分数的基本的性质:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。即:(其中m0)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:=1.6,将其化为的形式: =1.6。方程的右边没有变化,这要与“去分母”区别开。知识点三:解一元一次方程的一般步骤:1、解一元一次方程的基本思路:通过对方程变形,把含有未知数的项归到方程的一边,把常数项归到方程的另一边,最终把方程“转化”成xa的形式。2、解一元一次方程的一般步骤是:变形名称具体做法变形依据去分母在方程两边都乘以各分母的最小公倍数等式基本性质2去括号先去小括号,再去中括号,最后去大括号去括号法则、分配律移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)等式基本性质1合并同类项把方程化成axb(a0)的形式合并同类项法则系数化成1在方程两边都除以未知数的系数a,得到方程的解x等式基本性质2注意:(1)解方程时应注意: 解方程时,表中有些变形步骤可能用不到,并且也不一定按照自上而下的顺序,要根据方程形式 灵活安排求解步骤。熟练后,步骤及检验还可以合并简化。 去分母时,不要漏乘没有分母的项。去分母是为了简化运算,若不使用,可进行分数运算。 去括号时,不要漏乘括号内的项,若括号前为“”号,括号内各项要改变符号。(2)在方程的变形中易出现的错误有以下几种情况: 移项时忘记改变符号; 去分母时,易忘记将某些整式也乘最简公分母; 分数线兼有括号的作用,在去分母后,易忘记添加括号;3、理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a0时,方程有唯一解;(2)a=0,b=0时,方程有无数个解;(3)a=0,b0时,方程无解。知识点四:列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程(4)解方程(5)检验,看方程的解是否符合题意(6)写出答案知识点五:常见的一些等量关系常见列方程解应用题的几种类型:类型基本数量关系等量关系(1)和、差、倍、分问题较大量较小量多余量总量倍数倍量抓住关键性词语(2)等积变形问题变形前后体积相等(3)行程问题相遇问题路程速度时间甲走的路程乙走的路程两地距离追及问题同地不同时出发:前者走的路程追者走的路程同时不同地出发:前者走的路程两地距离追者所走的路程顺逆流问题顺流速度静水速度水流速度逆流速度静水速度水流速度顺流的距离逆流的距离(4)劳力调配问题从调配后的数量关系中找相等关系,要抓住“相等”“几倍”“几分之几”“多”“少”等关键词语(5)工程问题工作总量工作效率工作时间各部分工作量之和1(6)利润率问题商品利润商品售价商品进价商品利润率100售价进价(1利润率)抓住价格升降对利润率的影响来考虑(7)数字问题设一个两位数的十位上的数字、个位上的数字分别为a,b,则这个两位数可表示为10ab 抓住数字所在的位置、新数与原数之间的关系(8)储蓄问题利息本金利率期数本息和本金利息本金本金利率期数(1利息税率)(9)按比例分配问题甲乙丙abc全部数量各种成分的数量之和(设一份为x)(10)日历中的问题日历中每一行上相邻两数,右边的数比左边的数大1;日历中每一列上相邻的两数,下边的数比上边的数大7日历中的数a的取值范围是1a31,且都是正整数 四、规律方法指导解一元一次方程的注意事项:1、分母是小数时,根据分数的基本性质,把分母转化为整数;2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于除 号,去分母后分子各项应加括号;3、去括号时,不要漏乘括号内的项,不要弄错符号;4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。列方程解应用题的注意事项:列一元一次方程解决实际问题的一般步骤也可以概括为:设未知数。根据等量关系列方程。解方程。检验解的合理性,如果合理就用以解决实际问题,不合理则需要重新回到开始。作答。列方程解应用题是将实际问题数学化的过程,这个过程的关键是建立等量关系,通过列方程解决实际问题要把握三个重要环节:一是整体的、系统的审清题意;二是找问题中的等量关系;三是正确求解方程并判断解的合理性,其中,审题是基础,找等量关系是关键,为了找准等量关系,可以借助线段、表格、图形等方法进行分析。经典例题透析类型一:一元一次方程的有关概念1、 已知下列各式:2x51;871;xy;xyx2;3xy6;5x3y4z0;8;x0。其中方程的个数是()A、5B、6C、7D、8思路点拨:方程是含有未知数的等式,根据定义逐个进行判断,显然不合题意。解:是方程的是,共六个,所以选B总结升华:根据定义进行逐个判断是解题的基本方法,判断时应注意两点:一是等式;二是含有未知数,本题体现了对概念的理解与应用能力。举一反三:变式1判断下列方程是否是一元一次方程:(1)-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)变式2已知:(a-3)(2a+5)x+(a-3)y+60是一元一次方程,求a的值。类型二:一元一次方程的解法解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1。如果我们在牢固掌握这一常规解题思路的基础上,根据方程原形和特点,灵活安排解题步骤,并且巧妙地运用学过的知识,就可以收到化繁为简、事半功倍的效果。1、巧凑整数解方程1、解方程:思路点拨:仔细观察发现,含未知数的项的系数为,常数项有的关系,故直接移项凑成整数比先去分母简单。解:移项,得。合并同类项,得2x1。系数化为1,得x。举一反三:变式解方程:2x52、巧用观察法解方程2、解方程:3、巧去括号解方程含多层括号的一元一次方程,要根据方程中各系数的特点,选择适当的去括号的方法,以避免繁杂的计算过程。3、解方程:思路点拨:因为题目中分数的分子和分母具有倍数关系,所以从外向内去括号可以使计算简单。解:去括号,得去小括号,得去分母,得(3x5)88去括号、移项、合并同类项,得3x21两边同除以3,得x7原方程的解为x7举一反三:变式解方程:4、运用拆项法解方程在解有分母的一元一次方程时,可以不直接去分母,而是逆用分数加减法法则,拆项后再合并,有时可以使运算简便。4、解方程:思路点拨:注意到,这样逆用分数加减法法则,可使计算简便。5、巧去分母解方程当方程的分母含有小数,而小数之间又没有特殊的倍数关系时,若直接去分母则会出现比较繁琐的运算。为了避免这样的运算。应把分母化成整数。化整数时,利用分数的基本性质将分子、分母同时扩大相同的倍数即可。5、解方程:1解:原方程化为去分母,得100x(1320x)7去括号、移项、合并同类项,得120x20两边同除以120,得x原方程的解为6、巧组合解方程6、解方程:思路点拨:按常规解法将方程两边同乘72化去分母,但运算较复杂,注意到左边的第一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化解题过程。7、巧解含有绝对值的方程解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一次方程。对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为两个一元一次方程分别解之,即若|x|m,则xm或xm。7、解方程:|x2|30解法一:移项,得|x2|3当x20时,原方程可化为x23,解得x5当x20时,原方程可化为(x2)3,解得x1。所以方程|x2|30的解有两个:x5或x1。解法二:移项,得|x2|3。因为绝对值等于3的数有两个:3和3,所以x23或x23。分别解这两个一元一次方程,得解为x5或x1。举一反三:变式1 5|x|-163|x|-4变式2 类型三、一元一次方程的综合应用题1优化方案问题1、由于活动需要,78名师生需住宿一晚,他们住了一些普通双人间和普通三人间,结果每间客房正好住满,且在宾馆给他们打五折优惠的基础上一天一共付住宿费2130元。请你算一算,他们需要双人普通间和三人普通间各多少间?类型普通(元/间)豪华(元/间)双人房140300三人房150400解:设安排普通双人房x间,则可住2x人,费用为14050x元,此时安排普通三人房间,可住(782x)人,费用为15050元。由题意,得14050x150502130。解得x9,20。即安排三人房20间,双人房9间即可。2行程中的追及相遇问题2、甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地.问甲、乙行驶的速度分别是多少?思路点拨:设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:相遇前相遇后速度时间路程速度时间路程甲333+90乙33+9013相遇前甲行驶的路程+90=相遇前乙行驶的路程;相遇后乙行驶的路程=相遇前甲行驶的路程.解:设甲行驶的速度为千米/时,则相遇前甲行驶的路程为3千米,乙行驶的路程为(3+90)千米,乙行驶的速度为千米/时,由题意,得.解这个方程,得=15.检验:=15适合方程,且符合题意.将=15代入,得=45.答:甲行驶的速度为15千米/时,乙行驶的速度为45千米/时.总结升华:理解相遇前后的等量关系,相遇问题是行程问题中很重要的一种,它的特点是相向而行。这类问题可以通过画线段图或列表帮助理解、分析。举一反三:变式 甲、乙两地相距240千米,汽车从甲地开往乙地,速度为36千米/时,摩托车从乙地开往甲地,速度是汽车的。摩托车从乙地出发2小时30分钟后,汽车才开始从甲地开往乙地,问汽车开出几小时后遇到摩托车?分析:本题是一个异地不同时出发的相遇问题,其基本关系是:速度时间路程。虽然不同时出发,但在相遇时,汽车所行的路程摩托车所行的路程甲、乙两地的距离,这就是本题的等量关系。如果设汽车开出x小时后与摩托车相遇,则在相遇时,汽车和摩托车所行的路程可表示如图:其中摩托车先行的路程为千米;摩托车后来所行的路程为千米。解:设汽车开出x小时与摩托车相遇,则36x36240,解得x3答:汽车开出3小时后遇到摩托车。3日历中的方程3、(1)在2006年8月的日历中(如图(1),任意圈出一竖列上相邻的三个数,设中间的一个数为a,则用含a的代数式表示这三个数(从小到大排列)分别是。(2)现将连续自然数1至2006按图中(如图(2)的方式排成一个长方形阵列,用一个长方形框出16个数。图中框出的这16个数的和是_。在图(2)中,要使一个长方形框出的16个数之和分别等于2000、2006,是否可能?若不可能,试说明理由;若有可能,请求出该长方形框出的16个数中的最小数和最大数。思路点拨:(1)通过观察可以发现,一竖列上相邻的三个数,下面的数总比上面的数大7;(2)经观察不难发现,在这个长方形框里的16个数中,第一个数10与最后一个数34的和为44,第二个数与倒数第二个数,第三个数与倒数第三个数,它们的和都是44;设最小的数为a,由图(2)及(1)可知,这16个数分成8组,每组的两个数之和都是2a37+3=2a24。解:(1)a7,a,a7(2)352设框出的16个数中最小的一个数为a,则这16个数组成的矩形方框如下图所示。 则这16个数之和为16a192,当16a1922000时,a113, 当16a1922006时,a113.375。因为a是自然数,所以a113.375不符合题意, 即框出的16个数的和不可能是2006。 由方形阵列的排法可知,a只可能在1,2,3,4列,即a被7除的余数只可能是1,2,3,4。 因为1131671,即113被7除余1,113在第一列中,所以这16个数的和是2000是可能的, 这时,方框中最小的数是113,最大的数是11324137。总结升华:(1)日历中的数量关系 在日历中,每一横排相邻两个数字之间差1。 在日历中,每一竖排相邻两个数字之间差7。 在日历中,左上到右下方向相邻两个数字之间差8。 在日历中,右上到左下方向相邻两个数字之间差6。(2)用一个正方形任意圈出9个数的规律 中间一个数字是所有九个数字的平均值。 每一横排、每一竖排、每一斜排,中间一个数字都是它们的平均值。举一反三:变式1每人准备一份日历,在各自的日历上任意圈一个竖列上的相邻的四个数,两个分别把自己所圈4个数的和告诉同伴,由同伴求出这个数。(1)4个数的和等于42。(2)4个数的和等于60。解:设这4个数分别为x7,x,x7,x14(1)由题意,得(x7)x(x7)(x14)42 x7xx7x1442,4x1442 4x28,x7 x7770,x77714,x1471421 因为日历上没有0号,所以不符合实际,此题无解。x7xx7x14(2)由题意,得(x7)x(x7)(x14)60 x7xx7x1460,4x1460 4x46,x,是一个分数,日历上不可能出现分数, 所以不符合实际情况,此题无解。4教育储蓄4、小张在银行存了一笔钱,月利率为2%,利息税为20%,5个月后,他一共取出了本息和为1080元,问它存入的本金是多少元?解:设小张存入的本金为x元,则5个月后的利息为2%x5即0.1x元,这些利息需交利息税0.1x20%即0.02x元由题意得:x+0.1x-0.02x=1080x=1000答:他存入银行的本金为1000元。5图表信息题5、小明家使用的是分时电表,按平时段(6:0022:00)和谷时段(22:00次日6:00)分别计费,平时段每千瓦时电价为0.61元,谷时段每千瓦时电价为0.30元。小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如下图),同时将前4个月的用电量和相应电费制成表格(如下表)。月用电量(千瓦时)电费(元)19051.8029250.8539849.24410548.445根据上述信息,解答下列问题:(1)计算5月份的用电量及相应的电费,将所得结果填入表中;(2)小明家这5个月的平均用电量为_千瓦时;(3)小明家这5个月每月用电量是_趋势(选择“上升”或“下降”);这5个月每月电费 呈_趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500千瓦时,相应电费将达243元,请你根 据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量思路点拨:本题考查了日常生活中的问题,利用数学知识来解决实际问题(1)根据第一张图可以看出5月份平时段用电量为45千瓦时,谷时段用电量为65千瓦时,故5月份用电量为45+65=110千瓦时电费为650.30+450.61=46.95(元);(2)平均用电量实质上就是求平均数,五个月的用电量的和除以5;(3)由图示可以看出;(4)若设7月份平时段用电量为x千瓦时,则谷时段用电量为(500x)千瓦时,根据平时段用电量的电费+谷时用电量的电费=243列出方程即可求,得解:(1)65+45=110(千瓦时),650.30+450.61=46.95(元)(2)99(3)上升 下降(4)设小明家7月份平时段用电量为x千瓦时,则谷时段用电量(500x)千瓦时, 由题意得0.61x+0.30(500x)=243, 解方程得x=300,所以答:小明家7月份平时段用电量为300千瓦时,谷时段用电量为200千瓦时。学习成果测评基础达标:一、判断正误:1.含有未知数的代数式是方程( )2.1是方程x25x60的一个根,也可以说是这个方程的解( )3.方程 | x |5的解一定是方程 x50的解( )4.任何一个有理数都是方程 3x75x(2x7 ) 的解( )5.无论m和n是怎样的有理数,方程 m xn0 都是一元一次方程( )二、填空题:1.方程x23的解也是方程a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度企业高级管理人员薪资及福利待遇聘用合同
- 2025版光伏发电项目施工劳务分包及运维服务合同
- 贵州省从江县2025年上半年公开招聘城市协管员试题含答案分析
- 河北省固安县2025年上半年公开招聘村务工作者试题含答案分析
- 2025年度存款质押式信用证合同样本
- 2025年度能源勘探设备采购安装与勘探开发合同
- 2025年度水电项目承包经营与技术支持合同
- 河北省丰润县2025年上半年事业单位公开遴选试题含答案分析
- 大学生暑期社会实践的所见所闻
- 2025-2026人教鄂教版(2024)科学一年级上册教学计划
- 曲臂高空作业车施工方案
- 国家电网有限公司输变电工程通 用设计(330~750kV输电线路绝缘子金具串通 用设计分册)2024版
- 文献检索与毕业论文写作PPT完整全套教学课件
- 北师大版初中物理九年级全册第十章《机械能,内能及其转化》检测题(包含答案解析)
- JJF 1959-2021 通用角度尺校准规范 高清晰版
- 口腔预防医学第九章其他口腔疾病的预防
- 盂兰盆供简易仪轨
- 一汽商用车企业级BOM技术方案V1.7
- JJF 1117-2010计量比对
- FZ/T 01093-2008机织物结构分析方法织物中拆下纱线线密度的测定
- 中国马克思主义与当代(社会问题)
评论
0/150
提交评论