2019_2020学年高中数学第2章概率3条件概率与独立事件(第1课时)条件概率学案北师大版.docx_第1页
2019_2020学年高中数学第2章概率3条件概率与独立事件(第1课时)条件概率学案北师大版.docx_第2页
2019_2020学年高中数学第2章概率3条件概率与独立事件(第1课时)条件概率学案北师大版.docx_第3页
2019_2020学年高中数学第2章概率3条件概率与独立事件(第1课时)条件概率学案北师大版.docx_第4页
2019_2020学年高中数学第2章概率3条件概率与独立事件(第1课时)条件概率学案北师大版.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1课时条件概率学 习 目 标核 心 素 养1.了解条件概率的概念(重点)2掌握条件概率的两种方法(重点)3能利用条件概率公式解决一些简单的实际问题(难点)通过对条件概率的学习,培养“逻辑推理”、“数学抽象”、“数学运算”的数学素养.1条件概率(1)条件概率的定义B发生的条件下,A发生的概率,称为B发生时A发生的条件概率,记为P(A|B)(2)条件概率公式当P(B)0时,有P(A|B)(其中,AB也可以记成AB);当P(A)0时,有P(B|A).思考:事件P(B|A)与事件P(A|B)有什么不同?提示P(B|A)与P(A|B)意义不同,由条件概率的定义可知P(B|A)表示在事件A发生的条件下事件B发生的条件概率;而P(A|B)表示在事件B发生的条件下事件A发生的条件概率2条件概率的性质(1)P(B|A)0,1(2)如果B与C是两个互斥事件,则P(BC|A)P(B|A)P(C|A)1判断下列命题是否正确(正确的打“”,错误的打“”)(1)若事件A,B互斥,则P(B|A)1()(2)事件A发生的条件下,事件B发生,相当于A, B同时发生()答案(1)(2)2已知P(AB),P(A),则P(B|A)为()A B C DBP(B|A) .3下列式子成立的是()AP(A|B)P(B|A)B0P(B|A)1CP(AB)P(B|A)P(A)DP(AB|A)P(B)C根据条件概率的计算公式可知选项C正确4把一枚硬币任意掷两次,事件A第一次出现正面,事件B第二次出现正面,则P(B|A)_.P(A),P(B),P(AB)P(A)P(B),故P(B|A). 利用定义求条件概率【例1】一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A;事件“第二次抽到黑球”为B.(1)分别求事件A,B,AB发生的概率;(2)求P(B|A)解由古典概型的概率公式可知(1)P(A),P(B),P(AB).(2)P(B|A).用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型;(2)计算P(A),P(AB);(3)代入公式求P(B|A).1已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为()A75%B96%C72%D78.125%C记“任选一件产品是合格品”为事件A,则P(A)1P()14%96%. 记“任选一件产品是一级品”为事件B.由于一级品必是合格品,所以事件A包含事件B,故P(AB)P(B)由合格品中75%为一级品知P(B|A)75%; 故P(B)P(AB)P(A)P(B|A)96%75%72%.利用基本事件个数求条件概率【例2】现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率解设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事件AB.(1)从6个节目中不放回地依次抽取2个的事件数为n()A30,根据分步计数原理n(A)AA20,于是P(A).(2)因为n(AB)A12,于是P(AB).(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A).法二:因为n(AB)12,n(A)20,所以P(B|A).缩减基本事件法求条件概率(1)在缩小后的样本空间A中计算事件B发生的概率,即P(B|A).(2)在原样本空间中,先计算P(AB),P(A),再利用公式P(B|A)计算求得P(B|A).(3)条件概率的算法:已知事件A发生,在此条件下事件B发生,即事件AB发生,要求P(B|A),相当于把A看作新的基本事件空间计算事件AB发生的概率,即P(B|A).2一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回若已知第一只是好的,求第二只也是好的概率解令A第1只是好的,B第2只是好的,法一:n(A)CC,n(AB)CC,故P(B|A).法二:因事件A已发生(已知),故我们只研究事件B发生便可,在A发生的条件下,盒中仅剩9只晶体管,其中5只好的,所以P(B|A).条件概率性质的应用探究问题1掷一枚质地均匀的骰子,有多少个基本事件?它们之间有什么关系?随机事件出现“大于4的点”包含哪些基本事件?提示掷一枚质地均匀的骰子,可能出现的基本事件有“1点”“2点”“3点”“4点”“5点”“6点”,共6个,它们彼此互斥“大于4的点”包含“5点”“6点”两个基本事件2“先后抛出两枚质地均匀的骰子”试验中,已知第一枚出现4点,则第二枚出现“大于4”的事件,包含哪些基本事件?提示“第一枚4点,第二枚5点”“第一枚4点,第二枚6点”3先后抛出两枚质地均匀的骰子,已知第一枚出现4点,如何利用条件概率的性质求第二枚出现“大于4点”的概率?提示设第一枚出现4点为事件A,第二枚出现5点为事件B,第二枚出现6点为事件C.则所求事件为BC|A.P(BC|A)P(B|A)P(C|A).【例3】将外形相同的球分装三个盒子,每盒10个其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球如果第二次取出的是红球,则试验成功求试验成功的概率思路探究:设出基本事件,求出相应的概率,再用基本事件表示出“试验成功”这件事,求出其概率解设A从第一个盒子中取得标有字母A的球,B从第一个盒子中取得标有字母B的球,R第二次取出的球是红球,W第二次取出的球是白球,则容易求得P(A),P(B),P(R|A),P(W|A),P(R|B),P(W|B).事件“试验成功”表示为RARB,又事件RA与事件RB互斥,所以由概率的加法公式得P(RARB)P(RA)P(RB)P(R|A)P(A)P(R|B)P(B).利用条件概率性质的解题策略,(1)分析条件,选择公式:首先看事件B,C是否互斥,若互斥,则选择公式P(BC|A)P(B|A)P(C|A).(2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.3已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率解设“任选一人是男人”为事件A,“任选一人是女人”为事件B,“任选一人是色盲”为事件C.(1)此人患色盲的概率P(C)P(AC)P(BC)P(A)P(C|A)P(B)P(C|B).(2)P(A|C).计算条件概率要明确(1)准确理解条件概率的概念,条件概率中的两个事件是互相影响的,其结果受两个条件的概率的制约(2)要正确求出条件概率,必须首先弄清楚“事件A发生”“事件A发生并且事件B也发生”“事件B在事件A发生的条件下发生”的概率之间的关系1.若P(AB),P(A),则P(B|A)()AB C DB由公式得P(B|A).2下列说法正确的是()AP(B|A)P(AB)BP(B|A)是可能的C0P(B|A)1DP(A|A)0B由条件概率公式P(B|A)及0P(A)1知P(B|A)P(AB),故A选项错误;当事件A包含事件B时,有P(AB)P(B),此时P(B|A),故B选项正确,由于0P(B|A)1,P(A|A)1,故C,D选项错误故选B.34张奖券中只有1张能中奖,现分别由4名同学无放回地抽取若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是_因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率,显然是.4袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为_记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,“第二次才能取到黄球”为事件C,所以P(C)P(AB)P(A)P(B|A).5盒内装有16个球,其中6个是玻璃球,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论