




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数量关系八种必考题型讲解目录等差数列及其变式2十字交叉法8增长率相关速算法13牛吃草问题15鸡兔同笼问题17直除法23质数与合数26差分法28时钟问题详细讲解31上楼梯的问题33未找到索引项。 数量关系有哪些解题方法? 答:数量关系部分主要有两种题型:数字推理和数字运算。 数字推理包含:等差数列及其变式;两项之和等于第三项;等比数列及其变式;平方型及其变式;立方型及其变式;双重数列;混合型数列;一些特殊的排列规律等类型。对这几种题型解题方法如下:(1)观察法。这种方法对数字推理的所有题型(较简单的,基础性的)均适用。观察法对考生的要求比较高,考生要对数字特别敏感,这样才能一眼看出题目所属的类型。(2)假设法。在做题之前要快速扫描题目中所给出数列的各项,并仔细观察、分析各项之间的关系,然后大胆提出假设,从局部突破(一般是前三项)来寻找数列各项之间的规律。在假设时,可能一次假设并不能找到规律,这就要求考生有较好的心理素质,并迅速改变思路进行第二次假设。(3)心算要多于笔算。笔算因为要在纸面上进行,从而会浪费很多时间。(4)空缺项突破法。大体来说,如果空缺项在最后,要从前往后推导规律。如果空缺项在最前面,则相反。如果空缺项在中间,就需要看两边项数的多少来定,一般从项数多的一端来推导,然后延伸到项数少的一端来验证。(5)先易后难法。考生或许都能意识到这一点。在做简单题时,考生有时突然就有了难题的思路。同时这种方法还能激发考生临场发挥的潜力。数学运算包含:比例分配问题;和、倍、差问题;混合溶液问题;植树问题;预算问题等十余种。对这十余种题型解答的大体解法笔者亦总结如下:(1)凑整法。这种方法是简便运算中最常用的方法。主要是利用交换率和结合律,把数字凑成整数,再进行计算,就简便多了。(2)基准数法。当遇到两个以上的数字相加时,可以找一个中间数作为基准,然后再加上或减去每个加数与基准数的差,从而求得它们之和。(3)查找隐含规律法。考生需记住,国家公务员录用考试中的题目,几乎每一道数学运算题都有巧妙的解法,这些解法就是隐含的规律。找到这些规律,便会达到事半功倍的效果。(4)归纳总结,举一反三法。考生在做模拟题时要充分做到归纳总结。这样才能在考场上做到举一反三,增强必胜的信心。(5)常用技巧掌握法。掌握常用的解题技巧,如排除法、比较法等等。熟练掌握这些客观题解题技巧会帮助考生快速、准确地选出正确的答案,从而提高答题的效率。等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,。显然,括号内的数字应填13。在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A。这也是一种最基本的排列方式,等比数列。其特点为相邻两个数字之间的商是一个常数。该题中后项与前项相除得数均为3,故括号内的数字应填243。【例题4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为C。该题难度较大,可以视为等比数列的一个变形。题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1 5,2,2 5,3,因此括号内的数字应为603=180。这种规律对于没有类似实践经验的应试者往往很难想到。我们在这里作为例题专门加以强调。该题是1997年中央国家机关录用大学毕业生考试的原题。【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B。这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。故括号内的数字应为502-2=98。等差与等比混合式【例题6】5,4,10,8,15,16,(),()A 20,18B 18,32C 20,32D 18,32【解答】此题是一道典型的等差、等比数列的混合题。其中奇数项是以5为首项、等差为5的等差数列,偶数项是以4为首项、等比为2的等比数列。这样一来答案就可以容易得知是C。这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型。求和相加式与求差相减式【例题7】34,35,69,104,()A 138B 139C 173D 179【解答】答案为C。观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173。在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律。【例题8】5,3,2,1,1,()A -3B -2C 0D 2【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5与第二项3的差等于第三项2,第四项又是第二项和第三项之差所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C。求积相乘式与求商相除式【例题9】2,5,10,50,()A 100B 200C 250D 500【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D。【例题10】100,50,2,25,()A 1B 3C 2/25D 2/5【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。求平方数及其变式【例题11】1,4,9,(),25,36A 10B 14C 20D 16【解答】答案为D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。【例题12】66,83,102,123,()A 144B 145C 146D 147【解答】答案为C。这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12的平方再加2,得146。这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了。求立方数及其变式【例题13】1,8,27,()A 36B 64C 72D 81【解答】答案为B。各项分别是1,2,3,4的立方,故括号内应填的数字是64。【例题14】0,6,24,60,120,()A 186B 210C 220D 226【解答】答案为B。这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1的立方减1,第二个数是2的立方减2,第三个数是3的立方减3,第四个数是4的立方减4,依此类推,空格处应为6的立方减6,即210。双重数列【例题15】257,178,259,173,261,168,263,()A 275B 279C 164D 163【解答】答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,。也就是说,奇数项的都是大数,而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式。而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式。只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了。简单有理化式【例题16】-1,1/(+),1(+2),()A -2B 1/(-2)C +2D 1/(2-)【解答】这是一道综合性数列题,知识水平要求是高中程度,第二顶1/(+),经过有理化可以得到-,第三项用同一方法可以得到2-,那么未知项应该是-2,即答案为A。十字交叉法 众所周知,公务员行测考试每道题目平均做题时间约为50秒,时间紧,出题范围又广,是考生公认的难度较大的考试,成为众多考生的梦魇,因此必须转化思维,利用一些解题技巧来简化计算,提高解题速度。数量关系在加权平均数的相关题型中,由于数量关系复杂,列方程解答比较困难,十字交叉法能轻松解决这一问题。人口增长问题产量增长问题浓度问题平均分问题比重问题其他问题 十字交叉的方法是行测数量关系考题的一个重点,近年来,十字交叉法的题型提高了灵活性。这就要求考生在平时练习时能够揭示隐藏的加权平均的关系,并能够用十字交叉法简化计算。增长率相关速算法计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助作用。两年混合增长率公式:如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为:r1r2r1r2增长率化除为乘近似公式:如果第二期的值为A,增长率为r,则第一期的值A:AA/1rA(1-r)(实际上左式略大于右式,r越小,则误差越小,误差量级为r2)平均增长率近似公式:如果N年间的增长率分别为r1、r2、r3rn,则平均增长率:rr1r2r3rn/n(实际上左式略小于右式,增长率越接近,误差越小)求平均增长率时特别注意问题的表述方式,例如:1.“从2004年到2007年的平均增长率”一般表示不包括2004年的增长率;2.“2004、2005、2006、2007年的平均增长率”一般表示包括200年的增长率。“分子分母同时扩大/缩小型分数”变化趋势判定:1.A/B中若A与B同时扩大,则若A增长率大,则A/B扩大若B增长率大,则A/B缩小;A/B中若A与B同时缩小,则若A减少得快,则A/B缩小若B减少得快,则A/B扩大。2.A/AB中若A与B同时扩大,则若A增长率大,则A/AB扩大若B增长率大,则A/AB缩小;A/AB中若A与B同时缩小,则若A减少得快,则A/AB缩小若B减少得快,则A/AB扩大。多部分平均增长率:如果量A与量B构成总量“AB”,量A增长率为a,量B增长率为b,量“AB”的增长率为r,则A/B=r-b/a-r,一般用“十字交叉法”来简单计算:注意几点问题:1.r一定是介于a、b之间的,“十字交叉”相减的时候,一个r在前,另一个r在后;2.算出来的A/B=r-b/a-r是未增长之前的比例,如果要计算增长之后的比例,应该在这个比例上再乘以各自的增长率,即A/B=(r-b)(1a)/(a-r)(1b)。等速率增长结论:如果某一个量按照一个固定的速率增长,那么其增长量将越来越大,并且这个量的数值成“等比数列”,中间一项的平方等于两边两项的乘积。牛吃草问题牛顿问题,因由牛顿提出而得名,也有人称这一类问题叫做牛吃草问题。英国著名的物理学家学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。解题环节主要有四步: 1、求出每天长草量; 2、求出牧场原有草量; 3、求出每天实际消耗原有草量( 牛吃的草量- 生长的草量= 消耗原有草量); 4、最后求出可吃天数 想:这片草地天天以同样的速度生长是分析问题的难点。把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的1022-1610=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。求出了这个条件,把所有头牛分成两部分来研究,用其中头吃掉新长出的草,用其余头数吃掉原有的草,即可求出全部头牛吃的天数。 解:新长出的草供几头牛吃1天: (1022-1610)(22-10) =(220-160)12 =6012 =5(头) 这片草供25头牛吃的天数: (10-5)22(25-5) =52220 =5.5(天) 答:供25头牛可以吃5.5天。 牛顿问题的难点在于草每天都在不断生长,草的数量都在不断变化。解答这类题目的关键是想办法从变化中找出不变量,我们可以把总草量看成两部分的和,即原有的草量加新长的草量。显而易见,原有的草量是一定的,新长的草量虽然在变,但如果是匀速生长,我们也能找到另一个不变量每天(每周)新长出的草的数量。 其实这种牛吃草问题的核心公式是:原有草量=(牛数-单位时间长草量可供应的牛的数量)天数1、一块牧场长满草,每天牧草都均匀生长.这片牧场可供10头牛吃20天,可供15头牛吃10天。问:可供25头牛吃多少天?2、12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?3、现欲将一池塘水全部抽干,但同时有水匀速流入池塘。若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。问:若要5天抽干水,需多少台同样的抽水机来抽水?4、一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水? 答案解析1、解析:设1头牛1天吃1份牧草,则牧草每天的生长量:(1020-1510)(20-10)=5(份),原有草量:1020-520=100(份),则可供25头牛吃100(25-5)=5天。2、解析:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(216330-122810)(63-28)=0.3(份),每公亩牧场上的原有草量:216330-0.363=25.2(份),则72公亩的牧场126天可提供牧草:(25.2+0.3126)72=4536(份),可供养4536126=36头牛。3、解析:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(620-810)(20-10)=4单位,池塘中原有水量:620-420=40单位。若要5天内抽干水,需要抽水机405+4=12台。4、解析:设每人每小时的淘水量为“1个单位”,则船内原有水量与3小时内漏水总量之和为:131030单位,船内原有水量与8小时漏水量之和为158=40单位,说明8-3=5小时进水40-30=10单位,即进水速度为每小时105=2单位,而发现漏水时,船内已有3023=24单位的水了。若要求2小时内淘完,需安排(24+22)2=14人。鸡兔同笼问题“鸡兔同笼”是一类有名的中国古算题.最早出现在孙子算经中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法-“假设法”来求解.因此很有必要学会它的解法和思路.鸡兔同笼是我国古代著名趣题之一。大约在1500年前,孙子算经中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中各有几只鸡和兔? 假设法: 假设全是鸡:23570(只) 比总脚数少的:947024 (只) 兔:24(4-2)12 (只) 鸡:351223(只) 我们来总结一下这道题的解题思路:如果先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数鸡兔总数)(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。 鸡兔同笼公式 解法1:(兔的脚数总只数总脚数)(兔的脚数鸡的脚数) =鸡的只数 总只数鸡的只数=兔的只数 解法2:( 总脚数鸡的脚数总只数)(兔的脚数鸡的脚数) =兔的只数 总只数兔的只数=鸡的只数 解法3:总脚数2总头数=兔的只数 总只数兔的只数=鸡的只数 解法4 鸡的只数=(4鸡兔总只数-鸡兔总脚数)2 兔的只数=鸡兔总只数-鸡的只数 解法5兔总只数=(鸡兔总脚数-2鸡兔总只数)2 鸡的只数=鸡兔总只数-兔总只数 解法6(头数x4-实际脚数)2=鸡 解法7 4+2(总数x)总脚数 (x兔,总数x鸡数,用于方程)例1有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是2442=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数2-总头数=兔子数.上面的解法是孙子算经中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说例1.如果设想88只都是兔子,那么就有488只脚,比244只脚多了884-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(884-244)(4-2)=54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式:鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数)当然,我们也可以设想88只都是“鸡”,那么共有脚288=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,682=34(只).说明设想中的“鸡”,有34只是兔子,也可以列出公式:兔数=(总脚数-鸡脚数总头数)(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.现在,拿一个具体问题来试试上面的公式.例2红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有:蓝笔数=(1916-280)(19-11)=248=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8(11+19)=240.比280少40.40(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.308比1916或1116要容易计算些.利用已知数的特殊性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数1910+116=256.比280少24.24(19-11)=3,就知道设想6只“鸡”,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.下面再举两个稍有难度的例子.例3一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打甲每小时打306=5(份),乙每小时打3010=3(份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式“兔”数=(30-37)(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.例4今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是:(254-86)(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.“两数之差”的问题鸡兔同笼中的总头数是“两数之和”,如果把条件换成“两数之差”,又应该怎样去解呢?例5买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-840)(8+4)=30(张),这就知道,余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70(张).答:买了8分的邮票70张,4分的邮票30张.也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件“8分比4分多40张”,那么应有60张8分.以“分”作为计算单位,此时邮票总值是420+860=560.比680少,因此还要增加邮票.为了保持“差”是40,每增加1张4分,就要增加1张8分,每种要增加的张数是:(680-420-860)(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).例6一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-83)(10+8)=7(天).雨天是7+3=10天,总共7+10=17(天).答:这项工程17天完成.请注意,如果把“雨天比晴天多3天”去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7、例8与上一节基本问题之间的关系.总脚数是“两数之和”,如果把条件换成“两数之差”,又应该怎样去解呢?例7古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首.解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差1354+20=280(字).每首字数相差:74-54=8(字).因此,七言绝句有:28(28-20)=35(首).五言绝句有:35+13=48(首).答:五言绝句48首,七言绝句35首.解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是2023=460(字),2810=280(字),五言绝句的字数,反而多了:460-280=180(字).与题目中“少20字”相差:180+20=200(字).说明假设诗的首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比假设增加2008=25(首).五言绝句有23+25=48(首).七言绝句有10+25=35(首).在写出“鸡兔同笼”公式的时候,我们假设都是兔,或者都是鸡,对于例7、例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出的计算式子与“鸡兔同笼”公式对照一下,就会发现非常有趣的事.例5,假设都是8分邮票,4分邮票张数是(680-840)(8+4)=30(张).例6,假设都是兔,鸡的只数是(1004-28)(4+2)=62(只).例7,假设都是五言绝句,七言绝句的首数是(2013+20)(28-20)=35(首).直除法【速算技巧二:直除法】李委明提示:“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。【例1】中最大的数是( )。【解析】直接相除:30,30-,30-,30-,明显为四个数当中最大的数。【例2】32409/4103、32895/4701、23955/3413、12894/1831中最小的数是( )。【解析】32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小,因此四个数当中最小的数是32895/4701。李委明提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可避免的。【例3】6874.32/760.31、3052.18/341.02、4013.98/447.13、2304.83/259.74中最大的数是( )。在本节及以后的计算当中由于涉及到大量的估算,因此我们用a+表示一个比a大的数,用a-表示一个比a小的数。【解析】只有6874.32/760.31比9大,所以四个数当中最大的数是6874.32/760.31。【例4】5794.1/27591.43、3482.2/15130.87、4988.7/20788.33、6881.3/26458.46中最大的数是( )。【解析】本题直接用“直除法”很难直接看出结果,我们考虑这四个数的倒数:27591.43/5794.1、15130.87/3482.2、20788.33/4988.7、26458.46/6881.3,利用直除法,它们的首位分别为“4”、“4”、“4”、“3”,所以四个倒数当中26458.46/6881.3最小,因此原来四个数当中6881.3/26458.46最大。【例5】阅读下面饼状图,请问该季度第一车间比第二车间多生产多少?( )A.38.5B.42.8%C.50.1%D.63.4%【解析】5632-3945/3945=1687/3945=0.4=40%+,所以选B。【例6】某地区去年外贸出口额各季度统计如下,请问第二季度出口额占全年的比例为多少?( )第一季度第二季度第三季度第四季度全年出口额(亿元)457356983495384217608A.29.5B.32.4%C.33.7%D.34.6%【解析】5698/176080.3=30%+,其倒数17608/56983,所以5698/17608(1/3)-,所以选B。【例7】根据下图资料,己村的粮食总产量为戊村粮食总产量的多少倍?( )A.2.34B.1.76C.1.57D.1.32【解析】直接通过直除法计算516.1328.7:根据首两位为1.5*得到正确答案为C。质数与合数自然数是同学们最熟悉的数.全体自然数可以按照约数的个数进行分类.像2、3、5这样仅有1和它本身两个约数的自然数,称为质数(或素数).像4、6、8这样除了1和它本身以外,还有其它约数的自然数,称为合数.1只有一个约数,就是它本身.1既不是质数也不是合数、称为单位1.因此,全体自然数分成了三类:数1;全体质数;全体合数.任何一个合数都可以分解成若干个质因数乘积的形式,并且分法是唯一的,这个结论被称为算术基本定理.问题1 24有多少个约数?这些约数的和是多少?分析 24233.23的约数:1,2,22,23共4个.3的约数:l,3共2个.根据乘法原理,24的约数个数为:(31)(11)428.这8个约数为:l、2、4、8、3、6、12、24.它们的和为:1248361224(1248)3(1248)(1248)(13)(122223)(13)15460.解 24233.(31)(11)8.(122223)(13)15460.答:24有8个约数,这些约数的和是60.问题2 有8个不同约数的自然数中,最小的一个是多少?分析 824222.因此,约数个数是8的自然数,有三种类型:P71、P1P32、P1P2P3,其中P1、P2、P3是不同的质数.解 824222.27128,32324, 23530.有8个约数的最小自然数为24.问题3 分别判断103、437是质数还是合数.分析 对于一个不很大的自然数N(N1,N为非完全平方数).可用下面方法去判断它是质数还是合数:先找出一个大于N的最小的完全平方数K2,再写出K以内的所有质数;若这些质数都不能整除N,则N是质数;若这些质数中有一个质数能整除N,则N为合数.(请同学们想想这其中的道理)解 103112.而11以内的质数2、3、5、7都不能整除103,故103是质数.437212.而21以内的质数有:2、3、5、7、11、13、17、19.4371923, 437是合数.问题4 将下面八个数分成两组,使这两组数各自的乘积相等.14,33,35,30,75,39,143,169.分析 把八个数分成两组后,应使每组数的乘积所含的质因数一样.解 把已知的八个数分解质因数:1427,33311.3557,30235.75352,39313,1431113,169132.1475353023527,3914333169311132,分成的两组为:169,33,35,30与39,143,75,14或169,33,75,14与39,143,35,30.问题5 一个数是5个2、3个3、2个5、1个7的连乘积,这个数的两位数的约数中,最大的是几?分析 设这个数为N,则 N2533527.两位数中的最大数为99,其它数依次为98,97,.那么可以从两位数中最大的数开始找.解 N2533527.993211,不是N的约数.98272,不是N的约数.97是质数,不是N的约数.96253,是N的约数.所以,所求最大的两位数的约数是96.问题6 有这样的质数,它分别加上10和14仍为质数,你会求这个质数吗?分析 从最小的质数开始找,可以很快地找到3是符合条件的质数,还有没有符合条件的别的质数呢?没有.解 因为31013,31417,所以3是符合条件的质数.因为21012,21416,所以2是不符合条件的质数.我们将一切大于2的自然数按照被3除的余数分为3n、3n1、3n2(n1的整数)这三类.因为(3n1)143(n5)不是质数,(3n2)103(n4)不是质数,而3n仅当n1时才是质数.所以,3是唯一符合条件的质数.问题7 在乘积1000999998321 中,末尾连续有多少个零?分析 不必真的算出这个乘积,而可以从分析末尾的零是怎样产生的入手.因为2510,所以末尾的零只能由乘积中的质因数2与5相乘得到.因此,只需计算一下,把乘积分解成质因数的连乘积以后,有多少个质因数2,有多少个质因数5,其中哪一个的个数少,乘积的末尾就有多少个连续的零.解 先计算中的质因数5的个数.问题8 把一个两位数质数写在另一个两位数质数后边,得到一个四位数,它能被这两个质数之和的一半整除.试求出所有这样的质数对.分析 先利用已知条件,求出这两个质数之和.所以198x能被xy整除.又因为x是质数,所以198能被xy整除,即xy是198的约数.因为x与y均为两位数质数,所以一定是两位奇数,从而xy一定是两位或三位偶数.列举出198的两位或三位偶数约数:198,66,18.因为198与18都不能写成两个两位数质数之和,所以不符合题目要求.而661353194723432937,故符合题目要求的质数对为:(13,53)、(19,47)、(23,43)、(29,37).问题9 在101与300之间,只有3个约数的自然数有几个?分析 只有3个约数的自然数必是质数的平方,反之亦然.解 在101至300之间的平方数:112、122、132、142、152、162、172.其中112、132、172是质数的平方,它们分别只有3个约数.所以,只有3个约数的自然数有3个,即121、169、289.问题10 新河村农民用几只船分三次运送405袋化肥.已知每只船载的化肥袋数相等且至少载7袋.问每次应有多少只船,每只船载多少袋化肥?(每只船至多载50袋)分析 因为每只船载的化肥袋数相等,且分三次把405袋化肥运完,所以每次运送105袋.又每次运送的总袋数105应为每只船上载的化肥袋数与船数的积,即每次运化肥的船数与每只船上的化肥袋数都是105的约数.所以只要把105分解质因数.就可以求出船数和每只船载的化肥袋数.解 105357.因为每只船上载的袋数相等且至少载7袋,所以每次用的船数和每只船上所载的化肥袋数有以下几种情况:(1)用3只船,每只船载35袋化肥.(2)用5只船,每只船载21袋化肥.(3)用7只船,每只船载15袋化肥.(4)用15只船,每只船载7袋化肥.(因为每只船至多载50袋,故每次不能用1只船载105袋.)练习1.72有多少个约数?这些约数的和等于多少?2.求不大于200的只有15个约数的所有自然数.3.分别判断107、493是质数还是合数.4.有学生3496人,分成人数相等的小组参加劳动,每组人数限定在20以上,40以下,求每组人数及可分的组数?5.一个人买了2元1角6分钱的铅笔,如果一支铅笔的价格少1分,那么他可以用这些钱多买3支铅笔.问他原来可以买几支铅笔?6.一个自然数可以分解为3个质因数的积,果这3个质因数的平方和为39630,求这个自然数.在1,2,1000中有200个5的倍数,它们是:5,10,1000.在这200个数中,有40个能被2552整除,它们是25,50,1000.在这40个数中,有8个能被12553整除,它们是125,250,1000.在这8个数中,有1个能被62554整除,它是625.所以,中的质因数5的个数等于2004081249.而中的质因数2的个数,显然多于质因数5的个数.所以,乘积1000999998321中,末尾连续有249个零.差分法李委明提示:“差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。适用形式:两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。基础定义:在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。例如:324/53.1与313/51.7比较大小,其中324/53.1就是“大分数”,313/51.7就是“小分数”,而324-313/53.1-51.7=11/1.4就是“差分数”。“差分法”使用基本准则“差分数”代替“大分数”与“小分数”作比较:1、若差分数比小分数大,则大分数比小分数大;2、若差分数比小分数小,则大分数比小分数小;3、若差分数与小分数相等,则大分数与小分数相等。比如上文中就是“11/1.4代替324/53.1与313/51.7作比较”,因为11/1.4313/51.7(可以通过“直除法”或者“化同法”简单得到),所以324/53.1313/51.7。特别注意:一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。【例1】比较7/4和9/5的大小【解析】运用“差分法”来比较这两个分数的大小关系: 大分数小分数9/5 7/497/51=2/1(差分数)根据:差分数=2/17/4=小分数因此:大分数=9/57/4=小分数李委明提示:使用“差分法”的时候,牢记将“差分数”写在“大分数”的一侧,因为它代替的是“大分数”,然后再跟“小分数”做比较。【例2】比较32.3/101和32.6/103的大小【解析】运用“差分法”来比较这两个分数的大小关系: 小分数大分数32.3/10132.6/10332.632.3/103101=0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京海淀第十九中学教师招聘模拟试卷附答案详解(突破训练)
- 2025年西安经开第七小学招聘数学教师考前自测高频考点模拟试题及答案详解一套
- 2025福建武夷山市供销总公司招聘3人模拟试卷及答案详解(夺冠)
- 2025贵州黔西南州兴义民族师范学院高层次人才引进20人模拟试卷及答案详解参考
- 2025广东深圳市优才人力资源有限公司招聘编外聘用人员拟聘人员考前自测高频考点模拟试题及参考答案详解
- 2025年滁州明光市公开引进高中教育紧缺人才11人考前自测高频考点模拟试题及答案详解(必刷)
- 2025河南许昌市建安区人力资源和社会保障局招聘公益性岗位人员13人考前自测高频考点模拟试题及答案详解(夺冠)
- 2025广西南宁隆安县南圩镇杨湾卫生院医学影像专业招聘1人模拟试卷及答案详解(易错题)
- 安全培训教学图课件
- 安全培训救护小结课件
- 2025年成都市中考英语试题卷(含标准答案及解析)
- 专利代理机构管理制度
- 极简室内风格软装设计
- 压路机操作手入场安全教育试卷(含答案)
- 《非药物治疗多动症的方法和技能》记录
- 胖东来评定管理制度
- 产房考试试题及答案
- 重症自身免疫性脑炎监测与治疗中国专家共识(2024版)解读
- 供餐服务合同协议书模板
- 无偿搭车免责协议书
- 2025-2030年中国电力线载波通信芯片行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论