




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
欧拉线的发现与证明彭翕成 武汉 华中师范大学国家数字化学习工程技术研究中心 430079读初中的时候,偶然在一本课外书上看到了欧拉线:如图1,任意三角形的外心O、重心G、垂心H三点共线(此线被称为欧拉线),并且。当时觉得很有意思,希望记下来,反复好几次,都没记住,经常把三个点的位置记错,甚至有时候还将内心也扯进来了。无意中想到,既然是对任意三角形成立,那么对直角三角形也应该成立,于是便得到图2,垂心H与点B重合,外心O则是斜边AC的中点,此时欧拉线成为斜边上的中线,显然有成立。从此便再也没有记错。 图1 图2 后来,笔者甚至想,当初欧拉发现欧拉线,是不是也是先发现直角三角形中的欧拉线,再推广到一般三角形中去呢?就好像毕达哥拉斯先是发现等腰直角三角形满足勾股定理,再推广到一般直角三角形中去。对欧拉线是如何被发现的,笔者一直充满好奇;但查阅了很多资料,未果。在100个著名初等数学问题历史和解中,说欧拉线定理是欧拉一篇论文的成果之一,脚注为:“Solutio facilis problematum quorumdam geometricorum difficillimorum”,Novi commentarii Academiae scientiarum imperialis Petropolitanae (ad annum 1765),并给出下面这个巧妙证明。如图3,设M为边AB中点,S为重心,则;设U为外心,延长US到SO,使得,并连接OC;根据这两个等式,可判断,于是,即;或者以文字来表达:连接点O和三角形一顶点的直线与三角形这一顶点的对边垂直,因此连线是三角形的一个高。所以三高必然都通过点O,点O就是三角形的垂心。欧拉线定理得证。图3 欧拉的证明是如此巧妙,比起一般资料上的构造外接圆和平行四边形的证法,要简捷很多。那欧拉线定理到底是怎么被发现的呢?感谢网络的发达,笔者终于找到了答案。美国数学月刊刊登过Ed Sandifer先生一系列关于欧拉解决问题的文章:How Euler Did It?其中就有一篇关于欧拉线(Euler line)的。而在欧拉的一本传记Euler The Master of Us All中,也同样记录了欧拉线被发现的过程。在欧拉(1707-1783)之前,三角形五心很早就被发现,它们各自的性质已经被研究的很透彻了。那五心之间有何联系呢?还很少有人研究,更确切的说,应该是很少有人想到去研究。那为什么欧拉会想到去研究这些“心”之间的联系呢?说来也是机缘巧合。欧拉对海伦公式很有兴趣,给出了好几种巧妙证明。在研究海伦公式之后,他想:三条边能够唯一确定三角形,那么三角形的相关性质也应该可以由三边来表示,譬如面积就可以由海伦公式来确定。能否利用三角形三边来研究三角形的一些特殊点呢。三角形中最特殊的点莫过于三角形的重心、垂心、外心、内心了。(注:文献中没有表明欧拉在此处研究过旁心,可能是因为旁心在三角形外部,且有三个。) 于是,欧拉运用刚刚研究海伦公式的结论,结合当时还没被广泛使用的坐标思想(当时数学界还是认为欧式几何比解析几何更美妙),开始了以下的探索。用表示面积,设,则由海伦公式可得,则(注意:此结论在后面反复用到)。如图4,由得,同理;而,由得 。所以垂心E的坐标是:。 图4 图5如图5,R、L分别是AB、BC上中点,AL交CR于F,C、F在AB上射影为P、Q,则;由得,所以重心F的坐标是:。 图6如图6,HR、HD分别是AB、AC上中垂线,AM是BC上的高,易得,注意到,易得,因此,所以外心H的坐标是:。 至此,欧拉建立坐标系,利用三边边长表示了垂心E、重心F、外心H的坐标分别是:,。但求出这三个坐标又有什么用呢?丝毫看不出垂心、重心、外心之间有何关系。欧拉继续前进着,靠着他那天才般的计算能力。而我们后来者重新来走欧拉这条艰辛的道路,也难免不倒吸一口凉气。, , 。至此,欧拉发现:,因此得出结论:如图7, ABC的垂心E、重心F、外心H三点共线,且。 图7以上就是欧拉发现、证明欧拉线的过程。这一过程,在今天看来,确实有点繁琐。要强调的是,上文还省略了欧拉走过的弯路,就是欧拉也曾用类似的方法计算过三角形的内心,却没有发现。发现一条数学性质是不容易的。有时发现了某性质,却长时间得不到证明,这种事情在数学史上也是常有的。而欧拉线的发现与证明,两者是合二为一的。尽管欧拉线的发现并不像阿基米德发现浮力定律那样具有传奇色彩,给出的证明,我们现代人也会嫌其繁琐不再使用了,但这一史实是给我们很多启发。一:数学性质的发现,并不是单纯地依靠逻辑推理。很多时候是源于一个简单的想法,然后尝试着去探索。二:探索过程中,难免会走弯路,甚至会感觉前面没有路了。要坚持,不能轻言放弃。即使是数学大师的探索,在后人眼里,可能都是笨拙的。三:练好数学基本功。即使是在计算机高度发达的今天,扎实的计算能力和适当的等式变形,是学习和研究数学的基本功。四:要掌握数学软件。因为我们今天面对的数学问题比欧拉时代更复杂,而我们又有几人能达到欧拉那样超凡的计算能力?具体到三角形特殊点的研究,动态几何软件就是很好的探索工具。笔者曾让一些不知道欧拉线的中学生用超级画板去探究三角形的内心、外心、垂心、重心之间的关系,有一大半中学生能够独立发现欧拉线定理。而依靠计算机的高速运算力能,人们已经在三角形中,找到几千个具有特殊性质的点。这样的批量大生产是过去手工小作坊操作难以想象的。五:有些数学工作者对初等数学中的问题不屑一顾,认为自己应该是干大事的。想想欧拉,一代数学大师,不拒绝初等数学中的小问题,而且是持续研究,不断改进,并不是做过就丢。欧拉线的最初发现是1747年,而100个著名初等数学问题历史
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.2.2 研究有机化合物的一般方法 教学设计 (1) 2023-2024学年高二下学期化学人教版(2019)选择性必修3
- 第2课《说和做-记闻一多先生言行片段》说课稿2024-2025学年统编版语文七年级下册
- 灌肠操作护士考试题及答案
- 辐射健康考试题及答案大全
- 分娩镇痛考试题目及答案
- AI在施工团队协作与任务分配中的智能决策研究
- 2025家居装修材料授权代理购销合同
- 社区污水处理站工程风险评估报告
- 井控基础试题及答案
- 综合物流铁路专用线建设项目技术方案
- Profinet(S523-FANUC)发那科通讯设置
- 内容创作者合作协议
- 肋骨骨折手术护理配合
- 安保人员管理制度
- 灌区续建配套与节水改造工程施工组织设计
- 中职高一数学开学第一课(非凡数学之旅-中职生也能破茧成蝶)-【开学第一课】2024年中职秋季开学指南之爱上数学课
- GMS基础知识(第一版)1
- DL∕T 2528-2022 电力储能基本术语
- 挂靠协议书范本
- 03-03-ZQZ-CY型便携式自动气象站用户手册
- 2024年云南省中考数学试题(含答案)
评论
0/150
提交评论