全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初高中数学衔接知识点专题(七) 专题七 不 等 式【要点回顾】1一元二次不等式及其解法1定义:形如 为关于的一元二次不等式2一元二次不等式与二次函数及一元二次方程的关系(简称:三个二次)()一般地,一元二次不等式可以结合相应的二次函数、一元二次方程求解,步骤如下:(1) 将二次项系数先化为正数;(2) 观测相应的二次函数图象如果图象与轴有两个交点,此时对应的一元二次方程有两个不相等的实数根(也可由根的判别式来判断) 则 如果图象与轴只有一个交点,此时对应的一元二次方程有两个相等的实数根(也可由根的判别式来判断) 则: 如果图象与轴没有交点,此时对应的一元二次方程没有实数根 (也可由根的判别式来判断) 则: ()解一元二次不等式的步骤是:(1) 化二次项系数为正;(2) 若二次三项式能分解成两个一次因式的积,则求出两根那么“”型的解为(俗称两根之外);“”型的解为(俗称两根之间);(3) 否则,对二次三项式进行配方,变成,结合完全平方式为非负数的性质求解2简单分式不等式的解法 解简单的分式不等式的方法:对简单分式不等式进行等价转化,转化为整式不等式,应当注意分母不为零.3含有字母系数的一元一次不等式一元一次不等式最终可以化为的形式1当时,不等式的解为:;2当时,不等式的解为:;3当时,不等式化为:; 若,则不等式的解是全体实数; 若,则不等式无解【例题选讲】例1 解下列不等式:(1) (2) 解法一:原不等式可以化为:,于是:或所以,原不等式的解是解法二:解相应的方程得:,所以原不等式的解是(2) 解法一:原不等式可化为:,即于是:,所以原不等式的解是解法二:原不等式可化为:,即,解相应方程,得,所以原不等式的解是说明:解一元二次不等式,实际就是先解相应的一元二次方程,然后再根据二次函数的图象判断出不等式的解例2 解下列不等式:(1) (2) (3) 例3 已知对于任意实数,恒为正数,求实数的取值范围例4 解下列不等式:(1) (2) 例5 求关于的不等式的解解:原不等式可化为:(1) 当时,不等式的解为;(2) 当时, 时,不等式的解为; 时,不等式的解为; 时,不等式的解为全体实数(3) 当时,不等式无解综上所述:当或时,不等式的解为;当时,不等式的解为;当时,不等式的解为全体实数;当时,不等式无解【巩固练习】1解下列不等式:(1) (2) (3) (4) 2解下列不等式:(1) (2) (3) (4) 3解下列不等式:(1) (2) 4解关于的不等式5已知关于的不等式的解是一切实数,求的取值范围6若不等式的解是,求的值7取何值时,代数式的值不小于0?专题七不等式答案例2解:(1) 不等式可化为 不等式的解是(2) 不等式可化为 不等式的解是;(3) 不等式可化为例3解:显然不合题意,于是:例4分析:(1) 类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解 (2) 注意到经过配方法,分母实际上是一个正数解:(1) 解法(一)原不等式可化为: 解法(二) 原不等式可化为:(2) 解:原不等式可化为:说明:(1) 转化为整式不等式时,一定要先将右端变为0 (2) 本例也可以直接去分母,但应注意讨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合肥市人民医院仪器设备血型仪孵育器校准与维护
- 宁波市中医院胎盘羊水B超评估考核
- 常州市人民医院眼部美容手术技能考核
- 金华市中医院胃管置入操作考核
- 亳州市中医院护理合作发展考核
- 徐州市人民医院胰腺手术营养支持考核
- 池州市中医院疑难内瘘介入治疗术前评估考核
- 湖州市中医院超声定位碎石技术专项考核
- 莆田市中医院老年医学科安全管理制度考核
- 湖州市人民医院学术会议汇报与交流能力考核评价
- 基尔霍夫定律课件(共17张课件)
- 外研版(三年级起)小学英语单词总表
- 形势与政策(贵州财经大学)知到智慧树章节答案
- 2025届四川省泸州市高三一模语文试题
- 临床用药监测管理制度
- 2023单孔腹腔镜腹股沟疝手术规范化操作中国专家共识
- 景区旅游安全风险评估报告
- CommVault备份软件操作手册3
- 2023年全国职业院校技能大赛-声乐、器乐表演赛项规程
- 食品安全全员守则
- 手术清点记录评分标准
评论
0/150
提交评论