开漏 推挽 IO口原理.doc_第1页
开漏 推挽 IO口原理.doc_第2页
开漏 推挽 IO口原理.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

开漏 推挽 IO口原理(2008-03-20 17:49:06)转载标签:杂谈 推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止. 开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内). 漏级开路即高阻状态,适用于输入/输出,其可独立输入/输出低电平和高阻状态,若需要产生高电平,则需使用外部上拉电阻或使用如LCX245等电平转换芯片。有些朋友,尤其是未学过此方面知识的朋友,在实际工作中将I/O口设置为漏开,并想输出高电平,但向口线上写1后对方并未认出高电平,但用万用表测量引脚确有电压,这种认为是不对的,对于高阻状态来说,测量电压是无意义的,正确的方法应是外加上拉电阻,上拉电阻的阻值=上拉电压/芯片引脚最大灌(拉)电流。 推挽(wan)方式可完全独立产生高低电平,推挽方式为低阻,这样,才能保证口线上不分走电压或分走极小的电压(可忽略),保证输出与电源相同的高电平,推挽适用于输出而不适用于输入,因为若对推挽(低阻)加高电平后,I=U/R,I会很大,将造成口的烧毁。 对与C8051F的很多型号片子,将I/O口设置为推挽方式的做法为: PnMDOUT=0xff,Pn=0x00,这样设置I/O口为推挽,并输出低电平(可降低功耗) 将I/O口设置为漏开方式的做法为: PnMDOUT=0x00,Pn=0x11,这样设置I/O口为漏开。 如果学过三极管放大电路一定知道,前置单管放大器和功放末级放大电路的区别。单片机内部的逻辑经过内部的逻辑运算后需要输出到外面,外面的器件可能需要较大的电流才能推动,因此在单片机的输出端口必须有一个驱动电路。 这种驱动电路有两种形式: 其中的一种是采用一只N型三极管(npn或n沟道),以npn三极管为例,就是e接地,b接内部的逻辑运算,c引出,b受内部驱动可以控制三极管是否导通但如果三极管的c极一直悬空,尽管b极上发生高低变化,c极上也不会有高低变化,因此在这种条件下必须在外部提供一个电阻,电阻的一端接c(引出脚)另一端接电源(即上拉电阻),这样当三极管的b有高电压是三极管导通,c电压为低,当b为低电压时三极管不通,c极在电阻的拉动下为高电压,这种驱动电路有个特点:低电压是三极管驱动的,高电压是电阻驱动的(上下不对称),三极管导通时的ec内阻很小,因此可以提供很大的电流,可以直接驱动led甚至继电器,但电阻的驱动是有限的,最大高电平输出电流=(vcc-Vh)/r; 另一种是互补推挽输出,采用2只晶体管,一只在上一只在下,上面的一只是n型,下面为p型(以三极管为例),两只管子的连接为:npn(上)的c连vcc,pnp(下)的c接地,两只管子的ee,bb相连,其中ee作为输出(引出脚),bb接内部逻辑,这个电路通常用于功率放大点路的末级(音响),当bb接高电压时npn管导通输出高电压,由于三极管的ec电阻很小,因此输出的高电压有很强的驱动能力,当bb接低电压时npn截至,pnp导通,由于三极管的ec电阻很小因此输出的低电压有很强的驱动能力,简单的例子,9013导通时ec电阻不到10欧,以Vh=2.5v,vcc=5v计算,高电平输出电流最大=250MA,短路电流500ma,这个计算同时告诉我们采用推挽输出时一定要小心千万不要出现外部电路短路的可能,否则肯定烧毁芯片,特别是外部驱动三极管时别忘了在三极管的基极加限流电阻。推挽输出电路的形式很多,有些单片机上下都采用n型管,但内部逻辑提供互补输出,以上的说明仅仅为了说明推挽的原理,为了更深的理解可以参考功率放大电路。 开漏(open drain)和开集(open collector)。 所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。 开漏形式的电路有以下几个特点:1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。2. 可以将多个开漏输出的Pin,连接到一条线上。形成 “与逻辑” 关系。如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。3. 可以利用改变上拉电源的电压,改变传输电平。如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。应用中需注意:1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。例如,某输入Pin要求由开漏电路驱动。则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。如图3。2. 上拉电阻R pull-up的阻值决定了逻辑电平转换的沿的速度。阻值越大,速度越低功耗越小。反之亦然。 Open-Drain是对MOS管而言,Open-Collector是对双极型管而言,在用法上没啥区别。标准51是准双向IO口:1 输出结构类似OC门,输出低电平时,内部NMOS导通,驱动能力较强(800uA);输出高电平靠内部上拉电阻,驱动能力弱(60uA)。2 永远有内部电阻上拉(P0口除外),高电平输出电流能力很弱,所以即使IO口长时间短路到地也不会损坏IO口(同理,IO口低电平输出能力较强,作低电平输出时不能长时间短路到VCC)3 作输入时,因为OC门有线与特性,必须把IO口设为高电平(所以按键多为共地接法)4 作输出时,输出低电平可以推动LED(也是很弱的),输出高电平通常需要外接缓冲电路(所以LED多为共阳接法)5 软件模拟OC结构的总线反而比较方便-例如 IIC总线* P0口比较特殊,做外部总线时,是推挽输出,做普通IO时没有内部上拉电阻,所以P0口做按键输入需要外接上拉电阻。为什么设计成输出时高电平弱,低电平强-是考虑了当年流行的TTL器件输入特性.AVR的真正双向IO结构就复杂多了,单是控制端口的寄存器也有4个 PORTx.DDRx,PINx,SFIOR(PUD位),不过功能也强劲多了.作为通用数字I/O 使用时,所有AVR I/O 端口都具有真正的读- 修改- 写功能。输出缓冲器具有对称的驱动能力,可以输出或吸收大电流,直接驱动LED。所有的端口引脚都具有与电压无关的上拉电阻。并有保护二极管与VCC 和地相连。AVR IO具备多种IO模式:1 高阻态,多用于高阻模拟信号输入,例如ADC数模转换器输入,模拟比较器输入.2 弱上拉状态(Rup=20K50K),输入用。为低电平信号输入作了优化,省去外部上拉电阻,例如按键输入,低电平中断触发信号输入3 推挽强输出状态,驱动能力特强(20mA),可直接推动LED,而且高低驱动能力对称.使用注意事项:写用PORTx,读取用PINx实验时,尽量不要把管脚直接接到GND/VCC,当设定不当,IO口将会输出/灌入 80mA(Vcc=5V)的大电流,导致器件损坏。作输入时:1通常要使能内部上拉电阻,悬空(高阻态)将会很容易受干扰。(表面看好像是51的抗干扰能力强,是因为51永远有内部电阻上拉,)2尽量不要让输入悬空或模拟输入电平接近VCC/2,将会消耗太多的电流,特别是低功耗应用场合-CMOS电路的特点3读取软件赋予的引脚电平时需要在赋值指令out 和读取指令in 之间有一个时钟周期的间隔,如nop 指令。4功能模块(中断,定时器)的输入可以是低电平触发,也可以是上升沿触发或下降沿触发。5用于高阻模拟信号输入,切记不要使能内部上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论