


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等比数列与等差数列概念及性质对比1数列的定义顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列数列的基本特征是:构成数列的这些数是有序的数列和数集虽然是两个不同的概念,但它们既有区别,又有联系数列又是一类特殊的函数2等差数列的定义顾名思义,等差数列就是“差相等”的数列严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”这两个要点,刻画了等差数列的本质3等差数列的通项公式等差数列的通项公式是:an= a1(n1)d 这个通项公式既可看成是含有某些未知数的方程,又可将an看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具从发展的角度看,将通项公式进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系 4等差中项a称作a与b的等差中项是指三数a,a,b成等差数列其数学表示是:,或2 a=ab显然a是a和b的算术平均值 2 a=ab(或)是判断三数a,a,b成等差数列的一个依据,并且,2 a=ab(或)是a,a,b成等差数列的充要条件由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项值得指出的是,虽然用2a=ab(或)可同时判定a是a与b的等差中项及a是b与a的等差中项,但两者的意义是不一样的,因为等差数列a,a,b与等差数列b,a,a不是同一个数列5等差数列前n项的和等差数列前n项和的公式是:, 或 公式和均可看作方程事实上,公式和中均含有四个量,若知其中任意三个量的值,便可通过解方程的办法求一个量的值若将前n项和的公式与通项公式结合起来看,共有五个量,通常知道其中的任意三个量的值,通过解方程组就可求出其余的两个量的值公式的结构形式与梯形的面积公式是一致的,这可由教材中码放钢管的示意图得到印证公式中的也可看作关于变量n的二次式(d0时),其图像是在二次函数:的图像上当x取1,2,3,时所对应的那群孤立点这为我们利用函数的观点求解等差数列前n项和的最大值或最小值问题提供了直观的背景6等比数列的定义顾名思义,等比数列就是“比值相等”的数列严格地说,从第2项起,每一项与它前一项的比等于同一个常数的数列,叫做等比数列和等差数列类似,这个定义也有两个要点:一是“从第2项起”,二是“每一项与它前一项的比等于同一个常数”它们刻画了等比数列的本质7等比数列的通项公式等比数列的通项公式是:an= a1qn1 这里,一方面,可将an看作是n的函数,另一方面公式本身也可视为一个方程从发展的角度看,将公式进行适当推广,便可得更加广义的通项公式及等比数列的一个简单性质8等比中项g称作a与b的等比中项是指三数a,g,b,成等比数列其数学表示是,或 g2=ab显然,只有同两数才有等比中项;若两数有等比中项,若两数有等比中项,则必有两个,它们是一对互为相反数;一个等比数列从第2项起,每一项(有穷等比数列的末项除外)都是它的前一项与后一项的等比中项9等比数列前n项的和等比数列前n项和的公式是:公式可视为一个方程,它含
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅行社与导游的劳动合同(合同范本)6篇
- 宾馆住宿餐饮跟高招合同范本5篇
- 2025LED广告屏制作合同协议
- 九年级化学上册 4.3 氧气说课稿 (新版)鲁教版
- 第一课 清明微雨思先人教学设计-2025-2026学年小学地方、校本课程辽海版人与社会
- 10.动物的脸教学设计-2023-2024学年小学美术四年级下册人美版(常锐伦、欧京海)
- 2025年乌鲁木齐市国企考试真题
- 2025工程监理安全责任合同
- 高中生物 第四章 第五节 关注人类遗传病说课稿 苏教版必修2
- 线缆厂应急处理管理规章
- 2025年全球汽车供应链核心企业竞争力白皮书-罗兰贝格
- 2025年大学生英语六级必考词汇表全部汇编(带音标)
- FZ/T 52059-2021抗菌粘胶短纤维
- 医学课件-护理评估课件
- 幼儿园大班安全教育:《暴力玩具不能玩》 课件
- 26个英文字母大小写描红
- 养老院预算及成本管理制度
- 研学旅行基地评估认定评分表
- DL∕T 1867-2018 电力需求响应信息交换规范
- 版良性前列腺增生诊疗指南PPT
- 眼睑基底细胞癌ppt课件
评论
0/150
提交评论