




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座14)直线、圆的位置关系一课标要求:1能用解方程组的方法求两直线的交点坐标;2探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离;3能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;4能用直线和圆的方程解决一些简单的问题;5在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。二命题走向本讲考察重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以选择题的形式出现,有时在解析几何中也会出现大题,多考察其几何图形的性质或方程知识。预测2007年对本讲的考察是:(1)一个选择题或一个填空题,解答题多与其它知识联合考察;(2)热点问题是直线的位置关系、借助数形结合的思想处理直线与圆的位置关系,注重此种思想方法的考察也会是一个命题的方向;(3)本讲的内容考察了学生的理解能力、逻辑思维能力、运算能力。三要点精讲1直线l1与直线l2的的平行与垂直(1)若l1,l2均存在斜率且不重合:l1/l2 k1=k2;l1l2 k1k2=1。(2)若 若A1、A2、B1、B2都不为零。l1/l2;l1l2 A1A2+B1B2=0;l1与l2相交;l1与l2重合;注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。2 距离(1)两点间距离:若,则特别地:轴,则、轴,则。(2)平行线间距离:若, 则:。注意点:x,y对应项系数应相等。(3)点到直线的距离:,则P到l的距离为:3直线与圆的位置关系有三种(1)若,;(2);(3)。还可以利用直线方程与圆的方程联立方程组求解,通过解的个数来判断:(1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;(2)当方程组有且只有1个公共解时(直线与圆只有1个交点),直线与圆相切;(3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离;即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为,圆心C到直线l的距离为d,则直线与圆的位置关系满足以下关系:相切d=r0;相交d0;相离dr0。4两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,。; 外离 外切 相交 内切 内含判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决。四典例解析题型1:直线间的位置关系例1(1)(2006北京11)若三点 A(2,2),B(a,0),C(0,b)(ab0)共线,则, 的值等于 。(2)(2006上海文11)已知两条直线若,则_ _。解析:(1)答案:;(2)2。点评:(1)三点共线问题借助斜率来解决,只需保证;(2)对直线平行关系的判断在一般式方程中注意系数为零的情况。例2(1)(2006福建文,1)已知两条直线和互相垂直,则等于( )A2 B1 C0 D(2)(2006安徽理,7)若曲线的一条切线与直线垂直,则的方程为( )A B C D解析:(1)答案为D;(2)与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为,故选A。点评:直线间的垂直关系要充分利用好斜率互为负倒数的关系,同时兼顾到斜率为零和不存在两种情况。题型2:距离问题例3(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( )Axy=0 Bx+y=0 C|x|y=0 D|x|y|=0解析:设到坐标轴距离相等的点为(x,y)|x|y| |x|y|0。答案:D点评:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径例4(2002全国文,21)已知点P到两个定点M(1,0)、N(1,0)距离的比为,点N到直线PM的距离为1求直线PN的方程。解析:设点P的坐标为(x,y),由题设有,即。整理得 x2+y26x+1=0 因为点N到PM的距离为1,|M|2,所以PMN30,直线PM的斜率为,直线PM的方程为y=(x1) 将式代入式整理得x24x10。解得x2,x2。代入式得点P的坐标为(2,1)或(2,1);(2,1)或(2,1)。直线PN的方程为y=x1或y=x+1。点评:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想。该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度。题型3:直线与圆的位置关系例5(1)(2006安徽文,7)直线与圆没有公共点,则的取值范围是( )A B C D (2)(2006江苏理,2)圆的切线方程中有一个是( )Axy0 Bxy0 Cx0 Dy0解析:(1)解析:由圆的圆心到直线大于,且,选A。点评:该题考察了直线与圆位置关系的判定。(2)直线ax+by=0,则,由排除法,选C,本题也可数形结合,画出他们的图象自然会选C,用图象法解最省事。点评:本题主要考查圆的切线的求法,直线与圆相切的充要条件是圆心到直线的距离等于半径。直线与圆相切可以有两种方式转化(1)几何条件:圆心到直线的距离等于半径(2)代数条件:直线与圆的方程组成方程组有唯一解,从而转化成判别式等于零来解。例6(2006江西理,16)已知圆M:(xcosq)2(ysinq)21,直线l:ykx,下面四个命题:(A) 对任意实数k与q,直线l和圆M相切;(B) 对任意实数k与q,直线l和圆M有公共点;(C) 对任意实数q,必存在实数k,使得直线l与和圆M相切;(D)对任意实数k,必存在实数q,使得直线l与和圆M相切。其中真命题的代号是_(写出所有真命题的代号)解析:圆心坐标为(cosq,sinq)d故选(B)(D)点评:该题复合了三角参数的形式,考察了分类讨论的思想。题型4:直线与圆综合问题例7(1999全国,9)直线x+y2=0截圆x2y24得的劣弧所对的圆心角为( )A B C D解析:如图所示:图由消y得:x23x+2=0,x1=2,x2=1。A(2,0),B(1,)|AB|=2又|OB|OA|=2,AOB是等边三角形,AOB=,故选C。点评:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性。如果注意到直线AB的倾斜角为120,则等腰OAB的底角为60.因此AOB=60.更加体现出平面几何的意义。例8(2006全国2,16)过点(1,)的直线l将圆(x2)2y24分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k 。解析:过点的直线将圆分成两段弧,当劣弧所对的圆心角最小时,直线的斜率解析(数形结合)由图形可知点A在圆的内部, 圆心为O(2,0)要使得劣弧所对的圆心角最小,只能是直线,所以。点评:本题主要考察数形结合思想和两条相互垂直的直线的斜率的关系,难度中等。题型5:对称问题例9(89年高考题)一束光线l自A(3,3)发出,射到x轴上,被x轴反射到C:x2y24x4y70上。() 求反射线通过圆心C时,光线l的方程;() 求在x轴上,反射点M的范围解法一:已知圆的标准方程是(x2)2+(y2)2=1,它关于x轴的对称圆的方程是(x2)2+(y+2)2=1。设光线L所在的直线的方程是y3=k(x+3)(其中斜率k待定),由题设知对称圆的圆心C(2,-2)到这条直线的距离等于1,即d=1。整理得 12k2+25k+12=0,解得k= 或k= 。故所求直线方程是y3=(x+3),或y3= (x+3),即3x+4y+3=0或4x+3y+3=0。解法二:已知圆的标准方程是(x2)2+(y2)2=1,设交线L所在的直线的方程是y-3=k(x+3)(其中斜率k待定),由题意知k0,于是L的反射点的坐标是(,0),因为光线的入射角等于反射角,所以反射光线L所在直线的方程为y= k(x+),即y+kx+3(1+k)=0。这条直线应与已知圆相切,故圆心到直线的距离为1,即d=1。以下同解法一。点评:圆复合直线的对称问题,解题思路兼顾到直线对称性问题,重点关注对称圆的几何要素,特别是圆心坐标和圆的半径。例10已知函数f(x)=x21(x1)的图像为C1,曲线C2与C1关于直线y=x对称。(1)求曲线C2的方程y=g(x);(2)设函数y=g(x)的定义域为M,x1,x2M,且x1x2,求证|g(x1)g(x2)|x1x2|;(3)设A、B为曲线C2上任意不同两点,证明直线AB与直线y=x必相交。解析:(1)曲线C1和C2关于直线y=x对称,则g(x)为f(x)的反函数。y=x21,x2=y+1,又x1,x=,则曲线C2的方程为g(x)= (x0)。(2)设x1,x2M,且x1x2,则x1x20。又x10, x20,|g(x1)g(x2)|=| |=|x1x2|。(3)设A(x1,y1)、B(x2,y2)为曲线C2上任意不同两点,x1,x2M,且x1x2,由(2)知,|kAB|=|=1直线AB的斜率|kAB|1,又直线y=x的斜率为1,直线AB与直线y=x必相交。点评:曲线对称问题应从方程与曲线的对应关系入手来处理,最终转化为点的坐标之间的对应关系。题型6:轨迹问题例11(2005山东理,22)已知动圆过定点,且与直线相切,其中。(I)求动圆圆心的轨迹的方程;(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标。解析:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为;(II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将与联立消去,得由韦达定理知(1)当时,即时,所以,所以由知:所以。因此直线的方程可表示为,即,所以直线恒过定点。(2)当时,由,得=,将式代入上式整理化简可得:,所以,此时,直线的方程可表示为即,所以直线恒过定点。所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点。点评:该题是圆与圆锥曲线交汇题目,考察了轨迹问题,属于难度较大的综合题目。例12(2005江苏,19)如图,圆与圆的半径都是1,. 过动点分别作圆、圆的切线(分别为切点),使得. 试建立适当的坐标系,并求动点的轨迹方程。解析:以的中点为原点,所在直线为轴,建立如图所示的平面直角坐标系,则,。由已知,得。因为两圆半径均为1,所以。设,则,即(或)。点评:本小题主要考查求轨迹方程的方法及基本运算能力。题型7:课标创新题例13已知实数x、y满足,求的最大值与最小值。解析:表示过点A(0,1)和圆上的动点(x,y)的直线的斜率。如下图,当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值。设切线方程为,即,则,解得。因此,点评:直线知识是解析几何的基础知识,灵活运用直线知识解题具有构思巧妙、直观性强等特点,对启迪思维大有裨益。下面举例说明其在最值问题中的巧妙运用。例14设双曲线的两支分别为,正三角形PQR的三顶点位于此双曲线上。若在上,Q、R在上,求顶点Q、R的坐标。分析:正三角形PQR中,有,则以为圆心,为半径的圆与双曲线交于R、Q两点。根据两曲线方程可求出交点Q、R坐标。解析:设以P为圆心,为半径的圆的方程为:,由得:。(其中,可令进行换元解之)设Q、R两点的坐标分别为,则。即,同理可得:,且因为PQR是正三角形,则,即,得。代入方程,即。由方程组,得:或,所以,所求Q、R的坐标分别为点评:圆是最简单的二次曲线,它在解析几何及其它数学分支中都有广泛的应用。对一些数学问题,若能作一个辅助圆,可以沟通题设与结论之间的关系,从而使问题得解,起到铺路搭桥的作用。五思维总结1关于直线对称问题:(1)关于l :Ax By C 0对称问题:不论点,直线与曲线关于l 对称问题总可以转化为点关于l 对称问题,因为对称是由平分与垂直两部分组成,如求P(x0 ,y0)关于l :Ax By C 0对称点Q(x1 ,y1)有(1)与ABC 0。(2)解出x1 与y1 ;若求C1 :曲线f(x ,y)0(包括直线)关于l :Ax By C1 0对称的曲线C2 ,由上面的(1)、(2)中求出x0 g1(x1 ,y1)与y0 g2(x1 ,y1),然后代入C1 :f g1(x1 ,y1),g2(x2 ,y2)0,就得到关于l 对称的曲线C2 方程:f g1(x ,y),g2(x ,y)0。(3)若l :Ax By C 0中的x ,y 项系数|A|1,|B |1就可以用直接代入解之,尤其是选择填空题。如曲线C1 :y2 4 x 2关于l :x y 40对称的曲线l2 的方程为:(x 4) 2 4(y 4)2即y 用x 4代,x 用y 4代,这样就比较简单了。(4)解有关入射光线与反射光线问题就可以用对称问题来解决。点与圆位置关系:P(x0 ,y0)和圆C :(x a) 2 (y b) 2 r2。点P 在圆C 外有(x0 a) 2 (y0 b) 2 r2;点P 在圆上:(x0 a) 2 (y0 b) 2 r2;点P 在圆内:(x0 a) 2 (y0 b) 2 r2 。3直线与圆的位置关系:l :f1(x ,y)0圆C :f2(x ,y)0消y 得F(x2)0。(1)直线与圆相交:F(x ,y)0中D 0;或圆心到直线距离d r 。直线与圆相交的相关问题:弦长|AB|x1 x2|,或|AB|2;弦中点坐标(,);弦中点轨迹方程。(2)直线与圆相切:F(x)0中D 0,或d r 其相关问题是切线方程如P(x0 ,y0)是圆x2 y2 r2 上的点,过P 的切线方程为x0x y0y r2 ,其二是圆外点P(x0 ,y0)向圆到两条切线的切线长为或;其三是P(x0 ,y0)为圆x2 y2 r2 外一点引两条切线,有两个切点A ,B ,过A ,B 的直线方程为x0x y0y r2 。(3)直线与圆相离:F(x)0中D 0;或d r ;主要是圆上的点到直线距离d 的最大值与最小值,设Q 为圆C :(x a) 2 (y b) 2 r2 上任一点,|PQ|max |PC|r ;|PQ|min |PQ|r ,是利用图形的几何意义而不是列出距离的解析式求最值4圆与圆的位置关系:依平面几何的圆心距|O1O2|与两半径r1 ,r2 的和差关系判定(1)设O1 圆心O1 ,半径r1 ,O2 圆心O2 ,半径r2 则:当r1 r2 |O1O2|时O1 与O2 外切;当|r1 r2|O1O2|时,两圆相切;当|r1 r2|O1O2|r1 r2 时两圆相交;当|r1 r2|O1O2|时两圆内含;当r1 r2 |O1O2|时两圆外离。(2)设O1 :x2 y2 D1x E1y F1 0,O2 :x2 y2 D2x E2y F2 0。两圆相交A 、B 两点,其公共弦所在直线方程为(D1 D2)x (E1 E2)y F1 F2 0;经过两圆的交点的圆系方程为x2 y2 D1x E1y F1 l(x2 y2 D2x E2y F2)0(不包括O2 方程)。普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座13)直线、圆的方程一课标要求:1直线与方程(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;(2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;(3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;2圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。二命题走向直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程。预测2007年对本讲的考察是:(1)2道选择或填空,解答题多与其他知识联合考察,本讲对于数形结合思想的考察也会是一个出题方向;(2)热点问题是直线的倾斜角和斜率、直线的几种方程形式和求圆的方程。三要点精讲1倾斜角:一条直线L向上的方向与X轴的正方向所成的最小正角,叫做直线的倾斜角,范围为。2斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=tan;当直线的倾斜角等于900时,直线的斜率不存在。过两点p1(x1,y1),p2(x2,y2)(x1x2)的直线的斜率公式:k=tan(若x1x2,则直线p1p2的斜率不存在,此时直线的倾斜角为900)。4直线方程的五种形式确定直线方程需要有两个互相独立的条件。确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。名称方程说明适用条件斜截式y=kx+bk斜率b纵截距倾斜角为90的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)直线上已知点,k斜率倾斜角为90的直线不能用此式两点式=(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式+=1a直线的横截距b直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式Ax+By+C=0,分别为斜率、横截距和纵截距A、B不能同时为零直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。5圆的方程圆心为,半径为r的圆的标准方程为:。特殊地,当时,圆心在原点的圆的方程为:。圆的一般方程,圆心为点,半径,其中。二元二次方程,表示圆的方程的充要条件是:、项项的系数相同且不为0,即;、没有xy项,即B=0;、。四典例解析图题型1:直线的倾斜角例1(1995全国,5)图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则( )Ak1k2k3Bk3k1k2Ck3k2k1Dk1k3k2答案:D解析:直线l1的倾斜角1是钝角,故k10,直线l2与l3的倾斜角2、3均为锐角,且23,所以k2k30,因此k2k3k1,故应选D。点评:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力。例2过点P(2,1)作直线分别交x轴、y轴的正半轴于A、B两点,求的值最小时直线的方程。 解析:依题意作图,设BAO, 则, , 当,即时的值最小,此时直线的倾斜角为135, 斜率。故直线的方程为,即。点评:求直线方程是解析几何的基础,也是重要的题型。解这类题除用到有关概念和直线方程的五种形式外,还要用到一些技巧。题型2:斜率公式及应用例3(1)(05年江西高考)设实数x,y满足,则的最大值是_。(2)(1997全国文,24)已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数ylog2x的图象交于C、D两点。(1)证明点C、D和原点O在同一条直线上。(2)当BC平行于x轴时,求点A的坐标。解析:(1)如图,实数x,y满足的区域为图中阴影部分(包括边界),而表示点(x,y)与原点连线的斜率,则直线AO的斜率最大,其中A点坐标为,此时,所以的最大值是。 点评:本题还可以设,则,斜率k的最大值即为的最大值,但求解颇费周折。(2)证明:设A、B的横坐标分别为x1,x2,由题设知x11,x21,点A(x1,log8x1),B(x2,log8x2).因为A、B在过点O的直线上,所以,又点C、D的坐标分别为(x1,log2x1),(x2,log2x2)由于log2x13log8x1,log2x23log8x2,所以OC的斜率和OD的斜率分别为。由此得kOCkOD,即O、C、D在同一条直线上。由BC平行于x轴,有log2x1log8x2,解得 x2x13将其代入,得x13log8x13x1log8x1.由于x11,知log8x10,故x133x1,x1,于是点A的坐标为(,log8).点评:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力。例4(05年全国高考)当时,函数的最小值是( )A2 B C4 D解析:原式化简为,则y看作点A(0,5)与点的连线的斜率。因为点B的轨迹是即过A作直线,代入上式,由相切(0)可求出,由图象知k的最小值是4,故选C。点评:也可用三角函数公式变换求最值或用求导的方法求最值等。但将问题转化为直线与椭圆的位置关系使问题解决的十分准确与清晰。题型3:直线方程例5已知直线的点斜式方程为,求该直线另外三种特殊形式的方程。 解析:(1)将移项、展开括号后合并,即得斜截式方程。 (2)因为点(2,1)、(0,)均满足方程,故它们为直线上的两点。 由两点式方程得: 即 (3)由知:直线在y轴上的截距 又令,得 故直线的截距式方程点评:直线方程的四种特殊形式之间存在着内在的联系,它是直线在不同条件下的不同表现形式,要掌握好它们之间的互化。在解具体问题时,要根据问题的条件、结论,灵活恰当地选用公式,使问题解得简捷、明了。例6直线经过点P(-5,-4),且与两坐标轴围成的三角形面积为5,求直线的方程。 解析:设所求直线的方程为, 直线过点P(-5,-4),即。 又由已知有,即, 解方程组,得:或 故所求直线的方程为:,或。 即,或 点评:要求的方程,须先求截距a、b的值,而求截距的方法也有三种: (1)从点的坐标或中直接观察出来; (2)由斜截式或截距式方程确定截距;(3)在其他形式的直线方程中,令得轴上的截距b;令得出x轴上的截距a。总之,在求直线方程时,设计合理的运算途径比训练提高运算能力更为重要。解题时善于观察,勤于思考,常常能起到事半功倍的效果。题型3:直线方程综合问题例5(2003北京春理,12)在直角坐标系xOy中,已知AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A95 B91 C88 D75答案:B解析一:由y=10x(0x15,xN)转化为求满足不等式y10x(0x15,xN)所有整数y的值.然后再求其总数.令x=0,y有11个整数,x=1,y有10个,x=2或x=3时,y分别有9个,x=4时,y有8个,x=5或6时,y分别有7个,类推:x=13时y有2个,x=14或15时,y分别有1个,共91个整点.故选B。图解析二:将x=0,y=0和2x+3y=30所围成的三角形补成一个矩形.如图所示。对角线上共有6个整点,矩形中(包括边界)共有1611=176.因此所求AOB内部和边上的整点共有=91(个)点评:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径。例6(2003京春理,22)已知动圆过定点P(1,0),且与定直线l:x=1相切,点C在l上。()求动圆圆心的轨迹M的方程;()设过点P,且斜率为的直线与曲线M相交于A、B两点。(i)问:ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当ABC为钝角三角形时,求这种点C的纵坐标的取值范围。()解法一,依题意,曲线M是以点P为焦点,直线l为准线的抛物线,所以曲线M的方程为y2=4x.图解法二:设M(x,y),依题意有|MP|=|MN|,所以|x+1|=。化简得:y2=4x。()(i)由题意得,直线AB的方程为y=(x1).由消y得3x210x+3=0,解得x1=,x2=3。所以A点坐标为(),B点坐标为(3,2),|AB|=x1+x2+2=。假设存在点C(1,y),使ABC为正三角形,则|BC|=|AB|且|AC|=|AB|,即由得42+(y+2)2=()2+(y)2,解得y=。但y=不符合,所以由,组成的方程组无解。因此,直线l上不存在点C,使得ABC是正三角形。(ii)解法一:设C(1,y)使ABC成钝角三角形,由得y=2,即当点C的坐标为(1,2)时,A、B、C三点共线,故y2。又|AC|2=(1)2+(y)2=+y2,|BC|2=(3+1)2+(y+2)2=28+4y+y2,|AB|2=()2=。当CAB为钝角时,cosA=|AC|2+|AB|2,即,即y时,CAB为钝角。当|AC|2|BC|2+|AB|2,即,即y|AC|2+|BC|2,即,即。该不等式无解,所以ACB不可能为钝角。因此,当ABC为钝角三角形时,点C的纵坐标y的取值范围是。解法二:以AB为直径的圆的方程为(x)2+(y+)2=()2。圆心()到直线l:x=1的距离为,所以,以AB为直径的圆与直线l相切于点G(1,)。当直线l上的C点与G重合时,ACB为直角,当C与G点不重合,且A、B、C三点不共线时,ACB为锐角,即ABC中,ACB不可能是钝角。因此,要使ABC为钝角三角形,只可能是CAB或CBA为钝角。过点A且与AB垂直的直线方程为。令x=1得y=。过点B且与AB垂直的直线方程为y+2(x3)。令x=1得y=。又由解得y=2,所以,当点C的坐标为(1,2)时,A、B、C三点共线,不构成三角形。因此,当ABC为钝角三角形时,点C的纵坐标y的取值范围是y(y2)。点评:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力。比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度。题型4:圆的方程例7(1)已知ABC的三个项点坐标分别是A(4,1),B(6,3),C(3,0),求ABC外接圆的方程。 分析:如果设圆的标准方程,将三个顶点坐标分别代入,即可确定出三个独立参数a,b,r,写出圆的标准方程;如果注意到ABC外接圆的圆心是ABC三边垂直平分线的交点,由此可求圆心坐标和半径,也可以写出圆的标准方程。解法一:设所求圆的方程是因为A(4,1),B(6,3),C(3,0)都在圆上,所以它们的坐标都满足方程,于是 可解得所以ABC的外接圆的方程是。解法二:因为ABC外接圆的圆心既在AB的垂直平分线上,也在BC的垂直平分线上,所以先求AB、BC的垂直平分线方程,求得的交点坐标就是圆心坐标。,线段AB的中点为(5,1),线段BC的中点为,图41AB的垂直平分线方程为,BC的垂直平分线方程解由联立的方程组可得 ABC外接圆的圆心为(1,3),半径。故ABC外接圆的方程是点评:解法一用的是“待定系数法”,解法二利用了圆的几何性质。(2)求过A(4,1),B(6,3),C(3,0)三点的圆的方程,并求这个圆的半径长和圆心坐标。分析:细心的同学已经发现,本题与上节例1是相同的,在那里我们用了两种方法求圆的方程现在再尝试用圆的一般方程求解(解法三),可以比较一下哪种方法简捷。解析:设圆的方程为因为三点A(4,1),B(6,3),C(3,0)都在圆上,所以它们的坐标都是方程的解,将它们的坐标分别代入方程,得到关于D,E,F的一个三元一次方程组: ,解得。所以,圆的方程是。圆心是坐标(1,3),半径为。点评:“待定系数法”是求圆的方程的常用方法一般地,在选用圆的方程形式时,若问题涉及圆心和半径,则选用标准方程比较方便,否则选用一般方程方便些。例8若方程。 (1)当且仅当在什么范围内,该方程表示一个圆。 (2)当在以上范围内变化时,求圆心的轨迹方程。 解析:(1)由, , 当且仅当时, 即时,给定的方程表示一个圆。 (2)设圆心坐标为,则(为参数)。消去参数,为所求圆心轨迹方程。点评:圆的一般方程,圆心为点,半径,其中。题型5:圆的综合问题例9如图2,在平面直角坐标系中,给定y轴正半轴上两点A(0,a),B(0,b)(),试在x轴正半轴上求一点C,使ACB取得最大值。解析:设C是x轴正半轴上一点,在ABC中由正弦定理,有。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全技术2025年考试试题及答案
- 2025年VB考试复习题及答案
- 2025年VB背诵资料试题及答案
- 2025年生态修复工程中生物多样性保护策略研究报告
- 2025年演讲模版-大学生团队拓展训练心得体会模版
- 2025年全球铀矿资源分布与核能产业市场潜力及增长动力分析报告
- 企业超年龄协议书
- 行政管理学的重要性及其发展趋势试题及答案
- 二级VB实务操作试题及答案
- 公司学叉车协议书
- 园林植物养护管理 项目4 任务4.5行道树整形修剪学习资料
- 房地产交易律师见证书范文
- 2025年高考作文备考训练:歌曲《世界赠予我的》
- 消费心理学-理论、案例与实践-综合练习题及答案
- 《深度解析张旭课程》课件
- 【重庆】2024年度重庆房地产市场研究报告正式版
- 测绘设备投入计划
- 2025年复旦大学自主招生个人陈述范文分享
- 2025年度新能源充电桩建设运营合同意见书
- 中华人民共和国工会法课件
- 渔业船员安全培训课件
评论
0/150
提交评论