




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
六年级奥数之工程问题 一 基本公式 工程问题是应用题中的一种类型 在工程问题中 一般要出现三个量 工作总量 即工量 工作时间 完成工作总量所需时间即工时 和工作效率 单位时间内完成的工作量即工效 工作效率 工作时间 工作总量 工作总量 工作时间 工作效率 工作总量 工作效率 工作时间 二 基本思路 假设工作总量为 1 和总工作量无关 假设一个方便的数为工作总量 一般是它们完成工作总量所用时间的最小公倍数 利用上述三个基本关系 可以简单地表示出工作效率及工作时间 而把工量看做单位1时 工效即用工时的倒数来表示 关键问题 不管题型如何 都要学会确定工作量 工作时间 工作效率间的两两对应关系 三 例题讲解 例1 一项工程 甲乙两队合作需12天完成 乙丙两队合作需15天完成 甲丙两队合作需20天完成 如果由甲乙丙三队合作需几天完成 分析 设这项工程为1个单位 将所有题设条件转化为数学语言 甲乙合作工效1 12 乙丙合作工效1 15 甲丙合作工效1 20 观察设问 如何求得甲乙丙三队合作的工时 时间 工作总量 工作效率如今由 知工作总量为1 欲求工时 需知工效 经简单计算可知 不能由题设条件推导出甲乙丙三队合作的工效和 再次读题可发现 甲乙丙在相关工效条件中均出现两次 则可得出 甲乙丙三队合作的工效和的2倍 1 12 1 15 1 20 易得 甲乙丙三队合作的工效和 1 12 1 15 1 20 2 接下来由基本公式求解1 1 12 1 15 1 20 2 10 天 答 如果由甲乙丙三队合作需10天完成 例1 一项工程 甲乙两队合作需12天完成 乙丙两队合作需15天完成 甲丙两队合作需20天完成 如果由甲乙丙三队合作需几天完成 习题1 一件工作 甲5小时完成了1 4 乙6小时又完成了剩下任务的一半 最后余下的部分由甲乙合作 还需要多少时间才能完成 思路 1 假设工作总量为 1 2 联系基本公式 层层剥离 找出问题关键点 甲工效1 4 5 1 20乙工效 1 1 4 1 2 6 1 16 分析 设这项工程为1个单位 将所有题设条件转化为数学语言 工作时间 工作总量 工作效率 观察设问 如何求得甲乙合作完成余下部分工作所需的工时 即有 工作总量 1 1 4 1 1 4 2 3 8甲乙总工效1 20 1 16 9 80 下面分解第 问 则知需求出 工作总量 和工作效率 工作总量 不再是单位1 而是题设问题中 余下部分工作 总量 同时 工效也不再单纯是甲乙各自的工效 而是甲乙合作的工效和 自然地 所求工时3 8 9 80 10 3 小时 答 甲乙合作完成余下部分工作需10 3小时 习题1 一件工作 甲5小时完成了1 4 乙6小时又完成了剩下任务的一半 最后余下的部分由甲乙合作 还需要多少时间才能完成 思路 甲 乙各自的工效 求得工效差 即为3个零件在整批零件中所占比例 利用部分与整体的比例关系求得整批零件个数 例2 加工一批零件 甲乙合作24天可以完成 现在由甲先做16天 然后乙再做12天 还剩下这批零件的2 5没有完成 已知甲每天比乙多加工3个 求这批零件有多少个 甲乙合作12天 完成了总工程的几分之几 1 24 12 1 2 甲工效 甲一天能完成全工程的几分之几 3 5 1 2 16 12 1 40 乙工效 乙一天能完成全工程的几分之几 1 24 1 40 1 60 这批零件共多少个 3 1 40 1 60 360 个 答 这批零件共360个 例2 加工一批零件 甲乙合作24天可以完成 现在由甲先做16天 然后乙再做12天 还剩下这批零件的2 5没有完成 已知甲每天比乙多加工3个 求这批零件有多少个 分析 由于题设条件比较复杂 现采用 排除法 对工量 工时 工效进行筛选以寻找解题突破口 1 首先 因设问即要求求出工量 且部分工量2 5 孤立无援 排除从工量下手的可能 2 其次 因题中大量出现工时数据 故尝试从工时切入 工量 工时 工效而正因工时数据繁杂 若从工时切入则需要找出诸多与每一工时相对应的工效 计算受阻 故排除从工时下手的可能 A 甲做16天和乙又做12天完成工程的3 5 可转化为甲乙合作12天后 乙接着做4天共完成工程的3 5 B 又知道甲乙二人合作24天可以完成 因此甲单独做所用天数可以求出 则乙单独做所用天数迎刃而解 即求得工时 C 工效可用工时的倒数表示 则可由B步骤得出甲乙各自工效 3 经排除 只能以工效为突破口进行解题 习题2 师徒二人合作生产一批零件 6天可以完成任务 师傅先做5天后 由徒弟接着做3天 共完成任务的7 10 如果每人单独做这批零件各需几天 思路 1 假设工作总量为 1 2 联系基本公式 层层剥离 找出问题关键点 要求 参照例2 写出大概思路 不作具体标准要求 提示 解题思维和例2有点类似 o 哦 2 要求每人单独做各需几天 摆明了是求工时则有相关公式 工时 工量 工效又已知该批零件总量为单位1 问题转化为求师徒二人各自的工效 分析 1 题设条件 师徒工效和1 6 习题2 师徒二人合作生产一批零件 6天可以完成任务 师傅先做5天后 由徒弟接着做3天 共完成任务的7 10 如果每人单独做这批零件各需几天 3 关键 师傅先做5天接着徒弟做3天转化为师徒合作3天接着师傅再做2天 师傅工效 7 10 1 6 3 2 1 10徒弟工效1 6 1 10 1 15 由公式得师傅单独做需10天徒弟单独做需15天 答 师傅单独做需10天 徒弟单独做需15天 四 课后习题 1 一项工作 甲单独做20天可完成 乙单独做30天可完成 现在两人合做 用16天就完成了工作 已知在这16天中甲休息了2天 乙休息了若干天 问 乙休息了多少天 2 甲乙两人共同加工一批零件 8小时可完成任务 若甲单独加工需12小时 现甲乙共同加工12 5小时后 甲撤出 由乙继续生产420个零件后才完成任务 问 乙一共加工零件多少个 五 习题答案 解 1 假设总工作量为 1 故由题可得甲工效 1 20乙工效为 1 30 1 一项工作 甲单独做20天可完成 乙单独做30天可完成 现在两人合做 用16天就完成了工作 已知在这16天中甲休息了2天 乙休息了若干天 问 乙休息了多少天 2 甲所完成的工量占总工量 16 2 20 7 10 3 乙工时 3 10 1 30 9故乙休息的天数为16 9 7天答 乙休息了7天 乙所完成的工量占总工量 1 7 10 3 10 2 甲乙两人共同加工一批零件 8小时可完成任务 若甲单独加工需12小时 现甲乙共同加工12 5小时后 甲撤出 由乙继续生产420个零件后才完成任务 问 乙一共加工零件多少个 解 乙单独加工 每小时加工1 8 1 12 1 24 甲撤出后 剩下工作乙需做 1 12 5 1 8 1 24 84 5 所以乙每小时加工零件420 84 5 25 个 即乙12 5小时加工 12 5 25 60 个 则乙一共加工420 60 480 个 简单提问 利用什么公式 工时 工效 工量 请问 该式使用了什么公式 工量 工效 工时 答 乙一共加工零件480个 1 王师傅加工一批零件 计划在六月份每天都能超额完成当天任务的15 后来因机器维修 最后的5天每天只完成当天任务的八成 就这样 六月份共超额加工660个零件 王师傅原来的任务是每天加工多少个零件 首先我们知道6月有30天将额定每天完成的任务看作单位1每天超额15 一共工作30 5 25 天 每天超额完成15 25天共超额25 15 375 每天完成八成 5天少完成5 1 80 100 这个月共超额完成375 100 275 660 275 240 个 2 一堆饲料 3牛和5羊可以吃15天 5牛和6羊可以吃10天 那8牛和11羊可以吃几天解 将这堆饲料的总量看作单位13牛和5羊可以吃15天 吃的是单位1的量 相当于每天吃1 155牛和6羊可以吃10天 吃的是单位1的量 相当于每天吃1 10我们此时把3牛5羊看作一个整体 5牛6羊看作1个整体 每天吃饲料的1 15 1 10 1 6那么这堆饲料可以供8牛11羊吃1 1 6 6天 3 甲 乙合作完成一项工作 由于配合得好 甲的工作效率比独做时提高了十分之一 乙的工作效率比独做时提高了五分之一 甲 乙两人合作4小时 完成全部工作的五分之二 第二天乙又独做了4小时 还剩下这件工作的三十分之十三没完成 这项工作甲独做需要几个小时才能完成 乙独做4小时完成全部工程的1 2 5 13 30 3 5 13 30 1 6乙的工作效率 1 6 4 1 24乙独做需要1 1 24 24小时乙工作效率提高1 5后为 1 24 x 1 1 5 1 20甲乙提高后的工作效率和 2 5 4 1 10那么甲提高后的工作效率 1 10 1 20 1 20甲原来的工作效率 1 20 1 1 10 1 22甲单独做需要1 1 22 22小时 一项工程A B两人合作6天可以完成 如果A先做3天 B再接着做7天 可以完成 B单独完成这项工程需要多少天 AB合作 每天可以完成1 6A先做3天 B再做7天 可以看做AB合作3天 B再单独做7 3 4天AB合作3天 可以完成 1 6 3 1 2B单独做4天 完成了1 1 2 1 2B单独做 每天完成 1 2 4 1 8B单独完成 需要 1 1 8 8天 甲 乙二人同时开始加工一批零件 加单独做要20小时 乙单独做30小时 现在两人合作 工作了15小时后完成任务 已知甲休息了4小时 则乙休息了几小时 总的工作量为单位1甲的工作效率 1 20乙的工作效率 1 30甲乙工作效率和 1 20 1 30 1 12甲休息4小时 那么甲工作15 4 11小时 甲完成1 20 11 11 20乙完成1 11 20 9 20完成这些零件乙需要 9 20 1 30 27 2小时那么乙休息15 27 2 3 2小时 1 5小时 一间教室如果让甲打扫需要10分钟 乙打扫需要12分钟 丙打扫需要15分钟 有同样的两间教室A和B 甲在A教室 乙在B教室同时开始打扫 丙先帮助甲打扫 中途又去帮助乙打扫教室 最后两个教室同时打扫完 丙帮助甲打扫了多长时间 中途丙去乙教室的时间不计 将工作量看作单位1甲的工作效率 1 10乙的工作效率 1 12丙的工作效率 1 15甲乙丙合干完成1间教室需要1 1 10 1 12 1 15 4分钟解 设丙帮甲a分钟a分钟甲丙完成 1 10 1 15 a a 6那么剩下的1 a 6需要甲独自完成乙a分钟完成a 12那么剩下的1 a 12需要乙丙完成需要的时间 1 a 12 1 12 1 15 1 a 12 3 20 根据题意 1 a 6 1 10 1 a 12 3 20 将工作量看作单位1甲的工作效率 1 10乙的工作效率 1 12丙的工作效率 1 15甲乙丙合干完成1间教室需要1 1 10 1 12 1 15 4分钟两间教室都是一样的工作量 那么实际就是甲乙丙三人共同完成 上面已经解出完成1间需要4分钟 那么完成2间需要4 2 8分钟 甲8分钟完成1 10 8 4 5 那么丙需要完成1 4 5 1 5所以丙帮甲 1 5 1 15 3分钟那么丙帮乙8 3 5分钟 明明和乐乐在同一所学校学习 一天班主任老师问他俩各人的家离学校有多远 明明说 我放学回家要走10分钟 乐乐说 我比明明多用4分钟到家 老师又问 你俩谁走的速度快一些呢 乐乐说 我走得慢一些 明明每分钟比我多走14米 不过 我回家的路程要比明明多1 6 班主任根据这段对话 很快算出他俩的路程 你会算吗解 设乐乐的速度为x 则明明的速度 x 14 6 7 14x 10 x 14 12x 10 x 140 x 70明明 70 14 10 840 m 乐乐 840
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教师招聘之《小学教师招聘》通关练习题库包含答案详解(达标题)
- 教师招聘之《小学教师招聘》考试历年机考真题集【培优b卷】附答案详解
- 2025年教师招聘之《小学教师招聘》能力检测试卷及参考答案详解【突破训练】
- 考点攻克自考专业(行政管理)测试卷及完整答案【夺冠】
- 2025年教师招聘之《幼儿教师招聘》练习题包含答案详解【巩固】
- 2025年二级建造师《建筑工程管理与实务》真题及答案及解析AB卷
- 2025年教师招聘之《幼儿教师招聘》练习题库及参考答案详解(精练)
- 教师招聘之《小学教师招聘》能力提升打印大全(有一套)附答案详解
- 教师招聘之《幼儿教师招聘》复习试题附答案详解(预热题)
- 2025年教师招聘之《幼儿教师招聘》能力检测试卷完整参考答案详解
- 部编语文六年级上册3-古诗词三首《宿建德江》课件
- 《科学思维与科学方法论》第二章 科学抽象
- 质性数据分析方法与分析工具简介课件
- 应急管理专题讲座(二)
- 质量分析工具-5W1H分析法课件
- QES三体系内审检查表 含审核记录
- 公共政策分析陈庆云
- 螺杆式冷水机组招标技术要求
- 小区道路维修施工方案(全面完整版)
- 心包积液以及心包填塞
- 机电传动控制-电力电子技术1
评论
0/150
提交评论