湖北省巴东一中高中数学 3.1.3导数的几何意义教案 新人教版选修22.doc_第1页
湖北省巴东一中高中数学 3.1.3导数的几何意义教案 新人教版选修22.doc_第2页
湖北省巴东一中高中数学 3.1.3导数的几何意义教案 新人教版选修22.doc_第3页
湖北省巴东一中高中数学 3.1.3导数的几何意义教案 新人教版选修22.doc_第4页
湖北省巴东一中高中数学 3.1.3导数的几何意义教案 新人教版选修22.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

313 导数的几何意义【学情分析】:上一节课已经学习了导数定义,以及运用导数的定义来求导数。【教学目标】:1.了解曲线的切线的概念2.掌握用割线的极限位置上的直线来定义切线的方法3.并会求一曲线在具体一点处的切线的斜率与切线方程 【教学重点】:理解曲线在一点处的切线的定义,以及曲线在一点处的切线的斜率的定义.光滑曲线的切线斜率是了解导数概念的实际背景导数的几何意义及“数形结合,以直代曲”的思想方法.【教学难点】:发现、理解及应用导数的几何意义,会求一条具体的曲线在某一点处的切线斜率.【教学过程设计】:教学环节教学活动设计意图一、曲线的切线及切线的斜率:圆与圆锥曲线的切线定义:与曲线只有一个公共点并且位于曲线一边的直线叫切线。曲线的切线如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?图3.1-2我们发现,当点沿着曲线无限接近点p即x0时,割线趋近于确定的位置,这个确定位置的直线pt称为曲线在点p处的切线.问题:割线的斜率与切线pt的斜率有什么关系? 切线pt的斜率为多少?容易知道,割线的斜率是,当点沿着曲线无限接近点p时,无限趋近于切线pt的斜率,即说明:(1)设切线的倾斜角为,那么当x0时,割线pq的斜率,称为曲线在点p处的切线的斜率.这个概念: 提供了求曲线上某点切线的斜率的一种方法; 切线斜率的本质函数在处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.为课题引入作铺垫.二、导数的几何意义:函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,即 说明:求曲线在某点处的切线方程的基本步骤:求出p点的坐标;求出函数在点处的变化率 ,得到曲线在点的切线的斜率;利用点斜式求切线方程.指导学生理解导数的几何意义,可以讨论三、导函数由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,即: 注:在不致发生混淆时,导函数也简称导数函数在点处的导数、导函数、导数 之间的区别与联系。1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。四、典例分析例1:(1)求曲线y=f(x)=x2+1在点p(1,2)处的切线方程.(2)求函数y=3x2在点处的导数.解:(1),所以,所求切线的斜率为2,因此,所求的切线方程为即(2)因为所以,所求切线的斜率为6,因此,所求的切线方程为即例2、求曲线f(x)=x3x2+5在x=1处的切线的倾斜角.分析:要求切线的倾斜角,也要先求切线的斜率,再根据斜率k=tana,求出倾斜角a.解:tana=a0,a=.切线的倾斜角为.例3(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、附近的变化情况解:我们用曲线在、处的切线,刻画曲线在上述三个时刻附近的变化情况(1)当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降(2)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减(3)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢例4(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象根据图像,估计时,血管中药物浓度的瞬时变化率(精确到)解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值作处的切线,并在切线上去两点,如,则它的斜率为:所以 下表给出了药物浓度瞬时变化率的估计值:0.20.40.60.8药物浓度瞬时变化率0.40-0.7-1.4通过例子,更深入理解导数的概念五、课堂小结 导数的几何意义,怎么求曲线的切线。补充题目: 1导数的本质是什么?请写数学表达式。导数的本质是函数在 处的 即: 函数平均变化率的几何意义是什么,请在函数图像中画出来。1)平均变化率的几何意义: 2)当时,观察图形变化。 3导数的几何意义是什么?导数的几何意义是 4在函数的图像上,(1)用图形来体现导数,的几何意义,并用数学语言表述出来。(2)请描述、比较曲线在.附近增(减)以及增(减)快慢的情况。在附近呢? (说明:要求学生动脑(审题),动手(画切线),动口(讨论、描述运动员的运动状态),体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。)5如图表示人体血管中的药物浓度(单位:)随时间(单位:)变化的函数图像,根据图像,估计(min)时,血管中药物浓度的瞬时变化率,把数据用表格的形式列出。(精确到0.1)0.20.40.60.8药物浓度的瞬时变化率(说明:要求学生动脑(审题),动手(画切线),动口(说出如何估计切线斜率),进一步体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。)(以上几题可以让学生在课堂上完成)6. 求下列曲线在指定点处的切线斜率.(1)y=+2,x处()y,x处答案:(1)k=,()k=7已知曲线y=2x2上一点a(1,2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论