外文翻译--线控技术在汽车上的运用_第1页
外文翻译--线控技术在汽车上的运用_第2页
外文翻译--线控技术在汽车上的运用_第3页
外文翻译--线控技术在汽车上的运用_第4页
外文翻译--线控技术在汽车上的运用_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

附 录 附录 A1 Wire control technology in car use 1.Line Control Move (Volkswagen wire) By Line control servo system powered by realize electronic device, control device, gearing, brake four parts. ECU (electronic control units) for brake system for overall control by new electronic brake, each brakes have their own control unit. Mechanical connection reduce gradually, the brake pedal and brake the power transfer between separated, to be replaced by wire, wire transfer energy, cable relay signals. Line control move in cars since ABS since widely used on the braking system of once again skip-type development. Current line control servo system is divided into two types: one is the electro-hydraulic braking system hydraulic EHB (Electronic - Volkswagen), another kind is Electronic Mechanical braking system Mechanical EMB (Electronic - Volkswagen). Electric hydraulic brake system of electronic and hydraulic system is to combine electronic control system, by hydraulic system provide motivation; Electronic and mechanical braking system will replace traditional brake system with wire the air or brake fluid force transmission medium, such as electric brakes to replace traditional brake, electronic and mechanical braking system is the development direction of future braking system. Line control servo system is the common features is Angle with the pedal force can step by step; the proportion of electronic control Has control of braking torque and pedal Angle corresponding program control unit; Program control unit can be based on other sensors or controller input signal active braking and other function realization. 2. Wire Control Steering System Wire control Steering System referred By Steering SBW (By Wire System), it has the function of the network connection fault-tolerant control unit, actuators and sensors and redundancy of electronic control units, cancel the Steering dish and Steering wheel mechanical connection between entirely By electricity, realize Steering, from the traditional Steering System of various restrictions. Not only can free design of steering force transfer characteristics, but also can design the horns of the vehicle steering transmission characteristics, the design of steering characteristics to bring infinite space. The driver turned to the disk operating, turning to dish sensor test drivers steering data (yaw angles sensors, camera, etc), to turn auxiliary system detection data, providing environmental ECU to data and environmental testing data through the network bus real-time transmission to the electronic control unit ECU, ECU to data and in accordance with the driver detection data, environment controlling steering actuators action achieve turning and will wheel corner, torque and road such as feeling of feedback to drivers, to ensure that the steering system reliable safety and system has set up redundancy electronic control units, in emergency situations, the system will ignore error messages, make the vehicle safety running smoothly. 3. Line Oil-control Door Line oil-control door, also called electronic throttle, namely engine accelerator is through electronic control. The traditional throttle control mode is the accelerator pedal, drivers through by throttle levers of direct control engine accelerator open degree, thus decided to speeds up or slows down, the driver action and throttle action is through bars between the role of the mechanical connection. And with electronic connection line oil-control door instead of mechanical connection, the pilots on the accelerator pedal control by still pull rod, rod is not straight , but one received throttle attached to an accelerator pedal position sensor, the position of rod sensor that will change into electrical signals transmitted to the electronic control unit, automotive electronic control unit will to collect relevant sensor signal processed sends commands to throttle actuators control module, throttle actuators control module to send signals to the throttle actuators, thus control throttle opening-closing degree. That is the driver with throttle action of action between the electrical signals by electronic components is connected. Line than traditional throttle control oil door way according to precise, engine running of the various auto finely tuned into the cylinder of information, the fuel air mixture, improve engine combustion status, which greatly improve the performance and fuel economy of car. Toyota models adopted in Lexus all electronic thread oil-control door systems, have 2 accelerator pedal position sensor, all send data to the engine control unit ECM, if one of the accelerator pedal position sensor no signal, car can still driving, and engine warning light; If two accelerator pedal position sensor are no signal, the engine working in idle state. Line of oil door system according to the driver intention of action, analysis the driver, accurate control of the throttle and increase the driving stability and dynamic economy. In the new generation of accord sedan V6 engine 2.4 L and 3.0 L had adopted line on new technology of oil door. Through the sensor to monitor the accelerator pedal position of power control, ECU. Its advantage is improved started smooth, improved fuel efficiency engine response, defect is a slight lag. In addition the wire control technology brings another advantage is that fixed speed cruise function, its control key is integrated in on steering wheel, simple operation is convenient. Honda motor company Civic series to the eighth and evolution of 2005. The vehicle adopted 1 four cylinder engine, 1.8 L newly developed 1.8 cixin Li - VTEC control variable valve timing (intelligent and lift) inline 4 cylinder engine can burst 103kW for maximum power peak torque can reach more than 174Nm, almost all the natural inlet type with displacement of domestic models. This engine applied the Hondas latest I - VTEC technology, match with use wire the throttle control technology, can very effectively improve fuel economy, reducing harmful emissions. And intake efficiency and compression ratio are further improved, and made strong output power. Making yuan ECM, if one of the accelerator pedal position sensor no signal, car can still driving, and engine warning light; If two accelerator pedal position sensor are no signal, the engine working in idle state. Line of oil door system according to the driver intention of action, analysis the driver, accurate control of the throttle and increase the driving stability and dynamic economy. Example: wire control technology in fuel-cell car can drive applications - general HY HY wire control car change traditional mechanical transmission mode of connecting rod, using electronic signals to manipulate throttle, braking and steering mechanism. Canceled the traditional steering dish, throttle, brake pedal all operations are concentrated in a handles with one hand, the pilot can finish all of the operation. When pilots to speeds up or slows down, can promote the handle to the right or to the left; Braking buttons also installed in the handle, braking click braking button; When cornering, drivers simply up or down push lever. Electronic wire control device constitute a set of convenient operation control unit that a set of control unit is called X - drive. It replaced the traditional steering plate etc, with just one hand make drivers can be completed in all haste and slow (brake), turn operation. Traditional car is through a set of mechanical device, like steering bar etc, the rotation through manipulation steering dish to wheel rotation. Wire control technology is the driver to turn into an electronic pulse instructions, the sensor captures an electronic pulse, the electronic pulse signal is driven by the electronic control motor to make wheel bogie rotation. Line control system is transformed into the instructions driver with the electrical signals, electrical signals to drive motor. Because the software determines the automobile driving characteristics, such as accelerated, deceleration (brake), turn, etc., all work just reproduced, implement the corresponding software programs. 附录 A2 线控技术在汽车上的运用 1.线控制动( brake by-wire) 线控制动系统由实现电子化的供能装置、控制装置、传动装置、制动器 4个部分组成。 ECU(电控单元)对制动系统进行整体控制,采用全新的电子制动器,每个制动器有各自的控制单元。机械连接逐渐减少,制动踏板和制动器之间的动力传递分离开,取而代之的是电线连接,电线传递能量,数据线传递信号。线控制动是自 ABS 在汽车上得到广泛应用以来制动系统的又一次飞跃式发展。 目 前 线 控 制 动 系 统 分 为 2 种 类 型 : 一 种 是 电 液 制 动 系 统 EHB( Electronic-hydraulic Brake ), 另 一 种 是 电 子 机 械 制 动 系 统 EMB( Electronic-Mechanical Brake)。电液制动系统是将电子与液压系统相结合,由电子系统控制,液压系统提供动力;电子机械制动系统则用电线取代传统制动系统中的空气或制动液等传力介质,电制动器取代传统制动器,电子机械制动系统是未来制动系统的发展方向。线控制动系统的共同特点是都具有踏板转角与踏板力可按比例调控的电子踏板;具有控制制动力矩与踏板转角相对应的程序控制单元;程序控制单元可基于其他传感器或控制器的输入信号 实现主动制动及其它功能。 2.线控转向系统 线控转向系统简称 SBW( Steering By Wire System),它由具有容错功能的网络相连接的控制单元、执行器、传感器和冗余电控单元组成,取消了转向盘与转向轮之间的机械连接,完全由电实现转向,摆脱了传统转向系统的各种限制。不但可以自由设计汽车转向的力传递特性,而且可以设计汽车转向的角传递特性,给汽车转向特性的设计带来无限的空间。 驾驶员操作转向盘时,转向盘传感器检测驾驶员的转向数据(横摆角传感器、摄像机等),向转向辅助系统 ECU 提供环境检测数据,转向数据 和环境检测数据通过网络总线实时传送给电子控制单元 ECU, ECU 按照驾驶员的转向数据和环境检测数据,控制转向执行器动作实现转向,并将车轮的转角、转矩和路感等反馈给驾驶员,为确保转向系统安全可靠,系统设置了冗余电控单元,在紧急情况下,系统会忽略错误信息,使车辆安全平稳地运行。 3.线控油门 线控油门,也称为电控油门,即发动机的油门是通过电子控制的。传统的油门控制方式是驾驶员通过踩油门踏板,由油门拉杆直接控制发动机油门的开合程度,从而决定加速或减速,驾驶员的动作与油门动作之间是通过拉杆的机械作用连接的。而线控油门 用电子连接代替机械连接,驾驶员仍然通过踩油门踏板控制拉杆,拉杆不是直接连接到油门,而是连着一个油门踏板位置传感器,传感器将拉杆的位置变化转变为电信号传送至汽车的电子控制单元,电子控制单元将采集到的相关传感器信号经过处理后发送指令至油门执行器控制模块,油门执行器控制模块再发送信号给油门执行器,从而控制油门的开合程度。也就是说驾驶员的动作与油门的动作之间是通过电子元件的电信号连接的。线控油门比传统油门控制方式精确,发动机能够根据汽车的各种行驶信息,精确调节进入气缸的燃油空气混合气,改善发动机的燃烧状况,从而大大 提高了汽车的动力性和经济性。 丰田公司在 Lexus 车型上采用了全电子的线控油门系统,系统有 2 个加速踏板位置传感器,都发送数据给发动机控制单元 ECM,如果其中一个加速踏板位置传感器没有信号,汽车仍能行驶,同时发动机报警灯点亮

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论