正余弦定理的应用.doc_第1页
正余弦定理的应用.doc_第2页
正余弦定理的应用.doc_第3页
正余弦定理的应用.doc_第4页
正余弦定理的应用.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1正余弦定理的边角互换功能对于正、余弦定理,同学们已经开始熟悉,在解三角形的问题中常会用到它其实,在涉及到三角形的其他问题中,也常会用到它们两个定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,从而使许多问题得以解决例1已知a、b为ABC的边,A、B分别是a、b的对角,且,求的值解:(这是角的关系), (这是边的关系)于是,由合比定理得例2已知ABC中,三边a、b、c所对的角分别是A、B、C,且a、b、c成等差数列求证:sinAsinC2sinB证明:a、b、c成等差数列,ac2b(这是边的关系)又将、代入,得整理得sinAsinC2sinB(这是角的关系)2正、余弦定理的巧用某些三角习题的化简和求解,若能巧用正、余弦定理,则可避免许多繁杂的运算,从而使问题较轻松地获得解决,现举例说明如下:例3求sin220cos280sin20cos80的值解:原式sin220sin2102sin20sin10cos1502010150180,20、10、150可看作一个三角形的三个内角设这三个内角所对的边依次是a、b、c,由余弦定理得:a2b22abcos150c2()而由正弦定理知:a2sin20,b2sin10,c2sin150,代入()式得:sin220sin2102sin20sin10cos150sin2150原式例4在ABC中,三边长为连续的自然数,且最大角是最小角的2倍,求此三角形的三边长()分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系其中利用正弦二倍角展开后出现了cos,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的解:设三角形的三边长分别为,1,2,其中*,又设最小角为,则 ,又由余弦定理可得2(1)2(2)22(1)(2)cos将代入整理得:2340解之得14,21(舍)所以此三角形三边长为4,5,6评述: 此题所求为边长,故需利用正、余弦定理向边转化,从而建立关于边长的方程例5已知三角形的一个角为60,面积为10c2,周长为20c,求此三角形的各边长分析:此题所给的题设条件除一个角外,面积、周长都不是构成三角形的基本元素,但是都与三角形的边长有关系,故可以设出边长,利用所给条件建立方程,这样由于边长为三个未知数,所以需寻求三个方程,其一可利用余弦定理由三边表示已知60角的余弦,其二可用面积公式ABCabsinC表示面积,其三是周长条件应用解:设三角形的三边长分别为a、b、c,B60,则依题意得 由式得:b220(ac)2400a2c22ac40(ac) 将代入得4003ac40(ac)0再将代入得ac13由 b17,b27所以,此三角形三边长分别为5c,7c,8c评述: (1)在方程建立的过程中,应注意由余弦定理可以建立方程,也要注意含有正弦形式的面积公式的应用(2)由条件得到的是一个三元二次方程组,要注意要求学生体会其求解的方法和思路,以提高自己的解方程及运算能力六、讲解范例:例1在任一ABC中求证:证:左边=0=右边例2 在ABC中,已知,B=45 求A、C及c解一:由正弦定理得:B=4590 即ba A=60或120当A=60时C=75 当A=120时C=15 解二:设c=x由余弦定理 将已知条件代入,整理:解之:当时 从而A=60 ,C=75当时同理可求得:A=120 ,C=15例3 在ABC中,BC=a, AC=b, a, b是方程的两个根,且2cos(A+B)=1 求(1)角C的度数 (2)AB的长度 (3)ABC的面积解:(1)cosC=cosp-(A+B)=-cos(A+B)=- C=120(2)由题设: AB2=AC2+BC2-2ACBCosC 即AB=(3)SABC=例4 如图,在四边形ABCD中,已知ADCD, AD=10, AB=14, BDA=60, BCD=135 求BC的长解:在ABD中,设BD=x则即 整理得:解之: (舍去)由余弦定理: 例5 ABC中,若已知三边为连续正整数,最大角为钝角,1求最大角 ; 2求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积解:1设三边 且C为钝角 解得 或3 但时不能构成三角形应舍去当时 2设夹C角的两边为 S当时S最大=例6 在ABC中,AB5,AC3,D为BC中点,且AD4,求BC边长分析:此题所给题设条件只有边长,应考虑在假设BC为后,建立关于的方程而正弦定理涉及到两个角,故不可用此时应注意余弦定理在建立方程时所发挥的作用因为D为BC中点,所以BD、DC可表示为,然用利用互补角的余弦互为相反数这一性质建立方程解:设BC边为,则由D为BC中点,可得BDDC,在ADB中,cosADB在ADC中,cosADC又ADBADC180cosADBcos(180ADC)cosADC解得,2, 所以,BC边长为2评述:此题要启发学生注意余弦定理建立方程的功能,体会互补角的余弦值互为相反数这一性质的应用,并注意总结这一性质的适用题型另外,对于本节的例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论