




免费预览已结束,剩余7页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省龙岩市一级达标校2015届高三数学上学期期末质量检查试题 文 新人教a版一、选择题(本大题共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知复数(其中为虚数单位),则等于( )a b c d2、已知集合,若,则为( )a b c d3、函数的零点个数为( )a b c d4、设,那么“”是“”的( )a充分不必要条件 b必要不充分条件c充要条件 d既不充分也不必要条件5、执行右边的程序框图,若,则输出的为( )a bc d6、已知两条不同直线,三个不同平面,下列命题中正确是( )a若,则 b若,则c若,则 d若,则7、在一次歌咏比赛中,七位裁判为以选手打出的分数如下: 去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )a, b, c, d,8、函数在上的图象是( )a b c d9、同时具有性质:“最小正周期是;图象关于点对称;在上是减函数”的一个函数是( )a bc d10、已知函数,若对于任意,都有成立,则实数的取值范围是( )a b c d11、过双曲线(,)的一个焦点作一条渐近线的垂线,若垂足恰在线段(为坐标原点)的垂直平分线上,则双曲线的离心率为( )a b c d12、如图,矩形中,点在以为直径的半圆上移动,若,则的最大值是( )a b c d 二、填空题(本大题共4小题,每小题4分,共16分)13、抛物线的准线方程为 14、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 15、已知函数是定义域为的奇函数,那么 16、已知集合(其中,且为不小于的常数),例如,当时,设集合,若集合的所有元素和为,则 三、解答题(本大题共6小题,满分74分解答应写出文字说明、证明过程或演算步骤)17、(本小题满分12分)已知数列的前项和为,对任意满足,数列求数列,的通项公式;设数列,求数列的前项和18、(本小题满分12分)在中,角,所对的边分别为,且满足求角的大小;已知,的面积为,求边长的值19、(本小题满分12分)某学校就一问题进行内部问卷调查已知该学校有男学生人,女学生人,教师人,用分层抽样的方法从中抽取人进行问卷调查问卷调查的问题设置为“同意”、“不同意”两种,且每人都做一种选择下面表格中提供了被调查人答卷情况的部分信息请完成此统计表;根据此次调查,估计全校对这一问题持“同意”意见的人数;从被调查的女学生中选取人进行访谈,求选到两名学生中恰有一人“同意”,一人“不同意”的概率20、(本小题满分12分)如图是图的三视图,三棱锥中,分别是棱,的中点,的中线,交于点求证:;求三棱锥的体积;在线段上是否存在一点,使得平面?若存在,求的值,若不存在,请说明理由21、(本小题满分12分)已知椭圆()的离心率为,且经过点求椭圆的标准方程;设关于轴的对称点为,是椭圆上异于、的任意一点若直线,分别交轴于点,请问是否为定值?若是,请求出该定值;若不是,请说明理由22、(本小题满分14分)设,是函数的两个极值点,且,求证:为定值;求的取值范围;求的最大值龙岩市一级达标校20142015学年第一学期期末高三教学质量检查数学(文科)参考答案一、选择题(本大题共12小题,每小题5分,共60分)1-5 ddabb 6-10 dabcb 11-12 bd二、填空题(本大题共4小题,每小题4分,共16分)13 141 15 16三、解答题(本大题共6小题,共74分)17命题意图:本题主要考查等差数列的通项公式、等比数列的通项公式、裂项相消法求数列的前项和,考查运算求解能力和函数与方程思想.18命题意图:本小题主要考查正弦定理、余弦定理、三角形的面积公式、同角三角函数的基本关系式、辅助角公式等基础知识,考查运算求解能力,考查化归与转化思想19命题意图:本题主要考查古典概型、分层抽样、列举法等数学知识,考查学生分析问题解决问题的能力. 考查运算求解能力,数据处理能力,应用意识函数与方程思想,分类与整合思想.同意不同意合计教师112女学生246男学生325解:() 4分 ()人 7分()设“同意”的两名学生编号为,“不同意”的编号为1,2,3,4选出两人共有(,),(,1),(,2),(,3),(,4),(,1),(,2),(,3),(,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共15种结果, 9分其中(,1),(,2),(,3),(,4),(,1),(,2),(,3),(,4)共8种结果满足题意. 每个结果出现的可能性相等,所以恰好有1人“同意”,一人“不同意”的概率为. 12分20命题意图:本题主要考查直线与直线、直线与平面的位置关系、三视图的概念及体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力、探究能力、化归与转化能力.21命题意图:本题考查椭圆的方程及简单的几何性质、直线与圆锥曲线的位置关系等基础知识,考查运算求解和分析探究问题能力,考查数形结合思想、化归与转化思想解:()依题意得又 因为在椭圆上, 2分联立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 14548-2025船用半导体变流器通用技术条件
- 室外停车场消防的应急预案 7篇
- 四川省宜宾八中2024-2025学年八年级(下)期末物理模拟试卷(二)(含答案)
- 江苏省常州市2024-2025学年七年级下学期期末考试数学试卷(含答案)
- 《汽车销售服务流程》知到智慧树答案
- 虚拟现实产业市场调查分析
- “数字人文”概论与实践知到智慧树答案
- DB4401-T 65-2020 娱乐场所安全防范工程技术规范
- 汉字书法课件模板-隶书
- 汉字“兴”的笔顺课件
- 建筑工程常见施工质量通病及防治措施图文
- 家庭房产分割协议书
- 《液压与气动控制》课件
- GA/T 1280-2024银行自助设备安全性规范
- 带状疱疹后神经痛的诊治课件
- 火灾地震逃生演练课件
- 广东省深圳市2024-2025学年高一上学期期中考试数学试卷(含答案)
- 第6讲立体几何(2022-2023年高考真题)(原卷版)
- 中医耳针技术
- 山东省第二届化学分析检验人员行业职业技能竞赛理论试题库资料(含答案)
- AQ 1097-2014 井工煤矿安全设施设计编制导则(正式版)
评论
0/150
提交评论