


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
B半桥粒半桥粒在形态上与桥粒相似,但功能和化学组成不同。半桥粒是细胞与胞外基质间的连接形式,参与的细胞骨架仍然是中间丝,但其细胞质膜上的跨膜粘连蛋白是整联蛋白,与整联蛋白相连的胞外基质是层粘蛋白,从而将上皮细胞黏着在基底膜上C超速离心技术:1密度梯度离心:将要分离的细胞组分小心的铺放在密度逐渐增加的高溶解性的惰性物质(如蔗糖)形成的密度梯度溶液表面,通过重力或离心力的作用使样本中不同组分以不同的沉降率沉降,形成不同的沉降带,适用于不同密度2差速离心:利用不同的离心速率所产生的不同离心力将不同组分分开,适用于密度相近而大小不一常染色质是指间期细胞核内染色质纤维折叠压缩程度低,相对处于伸展状态,用碱性染料染色时着色浅的那些染色体CDK激酶周期蛋白依赖性蛋白激酶。特点:1.含有一段类似的氨基酸序列;2.他们都可以与周期蛋白结合,并将周期蛋白作为其调节亚单位,进而表现出蛋白激酶活性。初生细胞壁分泌合成的第二个区域。初生细胞壁实在细胞生长时期合成的,由纤维素、半纤维素、果胶和糖蛋白等组成。初生细胞壁可看成为凝胶样基质,纤维素埋于其中次生细胞壁当细胞停止生长后,多数细胞会分泌合成次生细胞壁。次生细胞壁与初生细胞壁相比,往往还含有木质素,但基本不含果胶,这使得次生细胞壁非常坚硬多线染色体来源于核内有丝分裂,即核内DNA多次复制而细胞不分裂,产生的子染色体并行排列,且体细胞内同源染色体配对,紧密结合在一起从而阻止染色质纤维进一步聚缩,形成体积很大的多线染色体灯刷染色体:是卵母细胞进行减数第一次分裂时停留在双线期的染色体,是一个二价体,包含4条染色单体,此时同源染色体尚未完全解除联会,因此可见到几处交叉D蛋白聚糖:蛋白聚糖位于结缔组织和细胞外基质以及许多细胞表面,是由糖胺聚糖(除透明质酸)与核心蛋白的丝氨酸残基共价连接形成大分子,蛋白聚糖的核心蛋白在ER上合成,其与多糖链结合的糖基化过程发生在高尔基复合体中G古核细菌(古细菌)古核生物细胞的形态结构和遗传结构装置与原核细胞相似,但有些分子进化特征更接近真核细胞。古细菌是一些生长在极端特殊环境中的细菌,其形态结构、DNA结构及其基本生活方式与原核细胞相似。最早发现的古核生物是产甲烷细菌类,之后发现的有盐细菌、热原质体、硫氧化菌。古核细胞没有核膜,其基因组机构为一环状DNA,常常含有操纵子机构。1996年,对古核生物产甲烷球菌基因子全序列的测定已完成G光反应:依赖光的反应,该反应只有在光照下才发生,包括原初反应和电子传递及光和磷酸化两个步骤,是在内囊体膜上通过叶绿素等光合色素分子吸收、传递光能,并将光能转化为电能,进而转换为活跃的化学能,形成ATP和NADPH,同时也产生O2G光合磷酸化:由光照所引起的电子传递与磷酸化作用相藕联而生成ATP的过程。光合磷酸化作用是与光合链电子传递相藕联的,光合作用通过光和磷酸化由光能形成ATP,用于CO2同化而将能量储存在有机物中G光系统:PS,由反应中心复合物和PS捕光复合物组成,其功能是利用吸收的光能或传递来的激发能在类囊体膜的基质侧还原NADP+形成NADPHG光系统:PS,由反应中心复合物和PS捕光复合物组成,其功能是利用吸收的光能在类囊体膜腔面一侧氧化水和在基质侧还原质体醌,在类囊体膜的两侧建立质子梯度H核被膜:位于细胞核的最外层,是细胞核与细胞质之间的界膜。功能:1构成了核、质之间的天然选择屏障,将细胞分成核和质两大结构与功能区域。2核被膜调控细胞核内外的物质交换和信息交流。核被膜由内外两层平行但不连续的单位膜构成。H核孔复合体:核孔并不是一个简单的孔洞,而使一个相对独立的复杂结构。1从横向上看,核孔复合体由周边向核孔中心依次可分为环、辐、栓3种结构亚单位。2从纵向上看,核孔复合体由核外向核内依次可分为胞质环、辐(+栓)、核质环三种亚单位。主要有4种结构组分1胞质环2核质环3辐4栓J胶原:是胞外基质最基本的成分之一。也是动物体内含量最丰富的蛋白,占人体蛋白质总量的25%以上。是胞外基质中最主要的水不溶性纤维蛋白J巨大染色体:在某些生物的细胞中,特别是在发育的某些阶段,可以观察到一些特殊的体积很大的染色体,包括多线染色体和灯刷染色体,这两种染色体总称为巨大染色体N黏着带:黏着带位于上皮细胞紧密连接的下方,相邻细胞间形成一个连续的带状结构。黏合带处的相邻细胞质膜间间隙约30nm,其间由Ca2+依赖的跨膜粘连蛋白形成胞间哼桥相连接。与黏合带相连的骨架纤维是微丝,连环蛋白介导钙黏蛋白与微丝的连接N黏着斑:是细胞与胞外基质之间的连接方式。参与的细胞骨架组分是微丝,跨膜粘连蛋白是整联蛋白,胞外基质主要是胶原和纤连蛋白。这种连接形式在肌肉与肌腱很常见Q桥粒:桥粒最明显的形态特征是细胞内锚蛋白形成独特的盘状胞质致密斑,一侧与细胞内的中间丝相连,另一侧与跨膜的粘连蛋白相连,在两个细胞之间形成纽扣样结构,将相邻细胞铆接在一起T糖胺聚糖:是由重复的二糖单位构成的不分枝的长链多糖,其二糖单位之一是氨基己糖,故又称为氨基聚糖,另一个是糖醛酸。糖胺聚糖可分为透明质酸、硫酸软骨素和硫酸皮肤素、硫酸乙酰肝素Y异染色质:是指间期核中,染色质纤维折叠压缩程度高,处于聚缩状态,用碱性染料染色时着色深的那些染色质。异染色质又分为结构异染色质或组成型异染色质和兼性染色质。结构异染色质是指各种类型的细胞中,除复制期以外,在整个细胞周期均处于聚缩状态。兼性染色质是指在某些细胞类型或一定的发育阶段,原来的常染色质聚缩,并丧失基因转录活性原位杂交用标记的核酸探针通过分子杂交确定特异核苷酸序列在染色体上或在细胞中的位置的方法。分子伴侣一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能时的组份呼吸链是由一系列的递氢反应和递电子反应按一定的顺序排列所组成的连续反应体系,它将代谢物脱下的成对氢原子交给氧生成水,同时有ATP生成的电子传递链核孔复合体核被膜上沟通核质和细胞质的复杂隧道结构,由多种核孔蛋白构成。隧道的内、外口和中央有由核糖核蛋白组成的颗粒,对进出核的物质有控制作用。核定位信号是另一种形式的信号肽, 可位于多肽序列的任何部分。一般含有 48个氨基酸, 且没有专一性, 作用是帮助亲核蛋白进入细胞核。入核信号与导肽的区别在于:1由含水的核孔通道来鉴别2入核信号是蛋白质的永久性部分,在引导入核过程中,并不被切除, 可以反复使用, 有利于细胞分裂后核蛋白重新入核。信号肽在蛋白质合成过程中,由mRNA上位于起始密码后的信号密码编码翻译出的肽链。它可与胞质中SRP结合,形成SRP-核糖体复合物,然后把核糖体带到内质网上,进行蛋白质的合成。脂质体1某些细胞质中的天然脂质小体2由连续的双层或多层复合脂质组成的人工小球囊。借助超声处理使复合脂质在水溶液中膨胀,即可形成脂质体。可以作为生物膜的实验模型,在研究或治疗上用来包载药物、酶或其他制剂。二价体:减数分裂I前期I的粗线期中两条同源染色体配对后,原来2n条染色体形成n对染色体,每一对含有两条同源染色体,这种配对的染色体称二价体。氧化磷酸化生物化学过程,是物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。主要在线粒体中进行。在真核细胞的线粒体或细菌中,物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应ATP合成酶(ATPsynthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的质膜上,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下合成ATP.分子结构由突出于膜外的F1亲水头部和嵌入膜内的Fo疏水尾部组成光反应通过叶绿素等光合色素分子吸收、传递光能,并将光能转化为化学能,形成ATP和NADPH的过程。包括光能的吸收、传递和光合磷酸化等过程。原初反应叶绿素分子从被光激发至引起第一个光化学反应为止的过程。包括光能的吸收、传递与转换,即光能被聚光色素分子吸收,并传递至作用中心,在作用中心发生最初的光化学反应,使电荷分离从而将光能转化为电能的过程。暗反应是CO2固定反应,简称碳固定反应(carbon-fixation reaction)。在这一反应中,叶绿体利用光反应产生的ATP和NADPH这两个高能化合物分别作为能源和还原的动力将CO2固定,使之转变成葡萄糖, 由于这一过程不需要光所以称为暗反应。碳固定反应开始于叶绿体基质, 结束于细胞质基质。转运肽定位于叶绿体蛋白质新生肽链的N端或C端,约4 kDa的肽段。起引导作用,使新生肽链能正确地定位。进入叶绿体后,此肽段被切除。定位于线粒体内的蛋白质,在肽链的末端也有类似的肽段。非循环式光合磷酸化在线性电子传递中,光驱动的电子经两个光系统最后传递给NADP+,并在电子传递过程中建立H+质子梯度,驱使ADP磷酸化产生ATP。非循环式电子传递和光合磷酸化的最终产物有ATP、NADPH、分子氧。成熟促进因子(MPF): 细胞周期的每一环节都是由一特定的细胞周期依赖性蛋白激酶 ( CDK)+ 周期蛋白结合和激活调节的细胞凋亡生物体内细胞在特定的内源和外源信号诱导下,其死亡途径被激活,并在有关基因的调控下发生的程序性死亡过程。是程序性死亡过程的一种主要形式,强调的是形态学上的改变。它涉及染色质凝聚和外周化、细胞质减少、核片段化、细胞质致密化、与周围细胞联系中断、内质网与细胞膜融合,最终细胞片段化形成许多细胞凋亡体,被其他细胞吞入。凋亡小体细胞凋亡过程中,细胞萎缩、碎裂,形成的有膜包围的含有核和细胞质碎片的小体。可被吞噬细胞所吞噬。联会复合体减数分裂前期的偶线期同源染色体联会过程中在联会的部位形成的一种特异的、非永久性的蛋白质复合结构。结构异染色质在细胞的所有时期都保持凝聚状态的染色质。主要由高度重复序列DNA构成。异染色质间期核内染色质丝折叠压缩程度高,处于凝聚状态,染料着色深的那部分染色质。富含重复DNA序列、复制延迟,一般无转录活性。现在一般将细胞外的信号分子称为第一信使,第二信使是:在胞内产生的小分子,其浓度的变化应答于胞外信号与细胞表面受体的结合,并在细胞信号转导中行使功能。细胞生物学(cellbiology)是在显微、亚显微和分子水平三个层次上,研究细胞的结构、功能和各种生命规律的一门科学。细胞通讯一个细胞发出的信号通过介质传递到另一细胞并与靶细胞相应的受体相互作用,然后通过细胞信号转导产生胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。细胞连接在细胞质膜的特化区域,通过膜蛋白,细胞支架蛋白,或者胞外基质形成的细胞与细胞之间、细胞与细胞外基质之间的连接结构受体(recepter)是一种能够识别和选择性结合某种配体(信号分子)的大分子,当与配体结合后,通过信号转导作用,启动一系列过程,最终表现为生物学效应。细胞信号通路(signal pathway)细胞接受外界信号,通过一整套特定的机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,是细胞信号系统的主线,这种反应系列称为细胞信号通路。门通道一种载体蛋白,当细胞内外特定离子浓度的改变或其刺激引起膜电位改变导致其构象改变,门打开,是被动运输方式的一种。间隙连接位于细胞之间的通讯连接,其功能是保证相邻细胞代谢的统一,其基本组成单位为连接子,由六个相同的蛋白环绕而成,相邻两个细胞膜上的两个连接子对接形成一个间隙连接单位,其允许小于1000道尔顿的小分子通过。膜泡运输(vesiculartransport)蛋白质通过不同类型的转运小泡从其粗面内质网合成部位转运至高尔基体进而分选运至细胞的不同部位的运输。涉及各种不同运输小泡的定向转运,以及膜泡的出芽与融合。次缢痕主缢痕之外近端着丝粒染色体短臂上的另一个凹陷,染色较浅。两端有异染色质,是与控制间期核仁形成有关的染色质部分,所以又称为核仁组织区。粘合斑位于细胞与细胞外基质间,通过整合素(integrin)把细胞中的肌动蛋白束和基质连接起来。连接处的质膜呈盘状,称为粘合斑。应力纤维:是真核细胞中广泛存在的微丝束结构。电镜观察表明,应力纤维由大量平行排列的微丝组成,其成分为肌动蛋白、肌球蛋白、原肌球蛋白和辅肌动蛋白。MPF(促进成熟因子)由CDC2和Cyclin B组成。CDK1(MPF)主要调控细胞周期中G2期向M期的转换。 MPF等细胞周期蛋白依赖性激酶可推动细胞周期不断运行,称为细胞周期引擎。酶偶联型受体酶偶联型受体(enzyme linked receptor)可分为两类:其一是本身具有激酶活性,如肽类生长因子(EGF等)的受体;其二是本身没有酶活性,但可以连接胞质酪氨酸激酶,如细胞因子受体超家族。这类受体的共同点是:通常为单次跨膜蛋白;接受配体后发生二聚化而激活,起动其下游信号转导。解偶联剂(uncoupler)解偶联剂使氧化和磷酸化脱偶联,氧化仍可以进行,而磷酸化不能进行,解偶联剂为离子载体或通道,能增大线粒体内膜对H+的通透性,消除H+梯度,因而无ATP生成,使氧化释放出来的能量全部以热的形式散发。如质子载体2,4-二硝基酚(DNP)。协助扩散(facilitated diffusion)需膜蛋白介导,物质顺浓度梯度、不消耗代谢能的物质跨膜运输方式称之。如葡萄糖、氨基酸、核苷酸等物质以及Na、K等离子的跨膜运输.流动镶嵌模型(fluidmosailmodel)认为球形膜蛋白分子以各种镶嵌形式与磷脂双分子层相结合,有的际在内外表面,有的部分或全部嵌入膜中,有的贯穿膜的全层,这些大多为功能蛋白。这一模型强调了膜的流动性和不对称性,较好地体现细胞的功能特点,被广泛接受。 信号识别颗粒(SPR)是一种核糖核酸酸蛋白复合体,有三个功能部位翻译暂停结构域,信号肽识别引进结合位点,SRP受体蛋白结合位点,介导核糖体附着到ER膜上。后转移线粒体、叶绿体中绝大多数protein和过氧化物酶体中的protein在导肽或前导肽的指导下进入这些细胞器,这种转移方式在protein跨膜过程中不仅需要ATP使多肽去折叠,而且还需要一些protein的帮助使其能够正确地折叠成有功能的蛋白。这些蛋白基本的特征在细胞质基质中合成以后再转移到这些细胞器中,因此称后转移。 G蛋白(信号蛋白)为可深性蛋白,全称为结全G调节蛋白,由,三亚基构成,位于细胞表面受体与CAMPase之间。当cell表面受体与相应配体结合时,释放信号例G蛋白激活,通过与GTP和GDP的结合,构象发生改变,并作用于CAMPase调节胞内第二信使CAMB的水平,最终产生特定的细胞效应,作为一种调节蛋白或偶联蛋白,G蛋白又可分为刺激型G蛋白和抑制型G蛋白等多种类型,其效应器可不同。小泡运输(transport by vecicles)protein从ER转运到Golgi,以及从Golgi转送到深酶体分泌泡CM细胞外等是由小泡介导的,这种小泡称运输小泡transport vesicles。内膜系统的protein定位,除了ER本身之外,其它膜结合细胞器的蛋白定拉都是通过形成运输泡,将protein从一个区室转送到另一个区室。主动运输(active transport)需细胞膜作功即消耗细胞的代谢能,物质逆浓度梯度或电化学梯度即从低浓度一侧向高浓度一侧的跨膜运输。由载体蛋白所介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行跨膜转运的方式.协同转运 (cotransport)是一类由Na-K泵(或H泵)与载体蛋白协同作用,靠间接消耗ATP所完成的主动运输方式.两种溶质协同跨膜运输的过程.两种溶质运输方向相同称为同向协同运输,相反则称为反向协同运输,是一种间接消耗ATP的主动运输过程内膜系统(endomembrane system)真核细胞内那些在结构、功能及发生上为连续统一体的膜性结构。它包括核膜(主要指核被膜的外膜)、内质网、高尔基复合体、溶酶体、微体(过氧化物酶体),以及小泡和液泡等染色质按功能状态可将染色质分为活性染色质(active chromatin)与非活性染色质(inactive chromatin)活性染色质是指具有转录活性的染色质非活性染色质是指没有转录活性的染色质.染色质是间期细胞核内由DNA、组蛋白、非组蛋白以及少量RNA组成的线性复合结构.染色质的DNA包括B型、A型和Z型.染色质蛋白质包括组蛋白和非组蛋白两大类. DNA和组蛋白是染色质的最基本组分,非组蛋白则主要对染色质构建及功能发挥调节作用细胞周期同步化使处于细胞周期不同阶段的细胞,共同进入周期某一特定阶段的这一过程称为细胞周期同步化,简称细胞同步化(synchronization of cell).经同步化后的细胞具有形态和生化上的相似的特点,这对于细胞周期的动力学以及细胞周期的调控等方面的研究非常有利内质网膜约占细胞总膜面积的一半,是真核细胞中最多的膜。内质网是内膜构成的封闭的网状管道系统。具有高度的多型性。可分为粗面型内质网和光面型内质网两类.RER的功能1蛋白质合成2蛋白质的修饰与加工:包括糖基化、羟基化、酰基化、二硫键形成等,其中最主要的是糖基化,几乎所有内质网上合成的蛋白质最终被糖基化3新生肽链的折叠、组装和运输COPII介导由内质网输出的膜泡运输,这种膜泡由内质网的排出位点(exit sites)以出芽的方式排出,内质网的排出位点没有结合核糖体,随机分布在内质网上。糖基化作用1使蛋白质能够抵抗消化酶的作用2赋予蛋白质传导信号的功能3某些蛋白只有在糖基化之后才能正确折叠G蛋白藕联受体介导的信号转导由G蛋白藕联受体所介导的细胞信号通路主要包括:以cAMP为第二信使的信号通路、以肌醇-1,4,5-三磷酸和二酰甘油作为双信使的磷脂酰肌醇信号通路和G蛋白藕联离子通道的信号通路。以cAMP为第二信使的信号通路在该信号通路中,G亚基的首要效应酶是腺苷磷酸环化酶,通过腺苷磷酸环化酶活性的变化调节靶细胞内第二信使cAMP的水平,进而影响信号通路的下游事件。腺苷酸环化酶在Mg2+或Mn2+存在条件下,催化ATP生成cAMP,在正常情况下细胞内cAMP的浓度很小,当腺苷酸环化酶激活后,cAMP水平急剧增加,使靶细胞产生快速应答;在细胞内还有另一种酶即环腺苷磷酸二酯酶(PDE),可降解cAMP生成5-AMP,导致细胞内cAMP水平下降而终止反应。cAMP浓度在细胞内的迅速调节是细胞快速应答胞外信号的重要分子基础磷脂酰肌醇双信使信号通路其信号转导是通过效应酶磷脂酶C完成的。细胞磷脂酰肌醇代谢途径是:双信使IP3和DAG的合成来自膜结合的磷脂酰肌醇(PI)。细胞膜结合的PI激酶将肌醇环上特定的羟基磷酸化,形成磷脂酰肌醇-4-磷酸(PIP)和磷脂酰肌醇-4,5-二磷酸(PIP2),胞外信号分子(激素)与Go或Gq蛋白藕联的受体结合,通过前面所述的G蛋白开关机制引起膜上磷脂酶C的异构体(PLC)的活化,致使质膜上磷脂酰肌醇-4,5-二磷酸(PIP2)被水解成1,4,5-肌醇三磷酸(IP3)和二酰甘油(DAG)两个第二信使。IP3刺激细胞内质网释放Ca2+进入细胞质基质,使胞内Ca2+浓度升高,DAG激活蛋白激酶C(PKC),活化的PKC进一步使底物蛋白磷酸化,并可活化Na+/H+交换引起细胞内pH升高,以磷酸酰肌醇代谢为基础的信号通路的最大特点是胞外信号被膜受体接受后,同时产生两个胞内信使,分别激活两个不同的信号通路,实现细胞对外界信号的应答,因此称为“双信使系统”简述JAK-STAT信号途径配体与受体结合导致受体二聚化;二聚化受体激活JAK;JAK将STAT磷酸化;STAT形成二聚体,暴露出入核信号;STAT进入核内,调节基因表达。简述RPTK-Ras信号通路配体RPTKadaptorGEFRasRaf(MAPKKK)MAPKKMAPK进入细胞核转录因子基因表达。3G蛋白藕联受体介导离子通道有些神经递质的受体本身就是离子通道,包括某些谷氨酸盐、血液中的复合胺以及神经-肌肉突触处的N-型乙酰胆碱受体。但许多神经递质受体是G蛋白藕联受体,有些效应器蛋白是Na+或K+通道。神经递质与受体结合引发G蛋白藕联的离子通道的开启或关闭,进而导致膜电位的改变。其他神经递质受体以及嗅觉受体和眼睛的光受体是通过第二信使的作用间接调节离子通道活性的G蛋白藕联受体。横纹肌细胞N-型乙酰胆碱受体结合乙酰胆碱后产生动作电位,引发肌肉收缩,与此相反,乙酰胆碱与心肌M-型乙酰胆碱受体结合后会因为引发肌细胞膜超级化而减缓心肌收缩速率。M-型乙酰胆碱受体与Gi蛋白藕联,受体的活化导致Gi蛋白联系的K+通道开放,K+流出引起质膜超级化。细胞凋亡的分子机制诱导凋亡的因子1.物理因子(射线、温度)2.化学及生物因子。从生理因子来说有caspase依赖性凋亡和不依赖于caspase的凋亡信号分子诱导的caspase依赖性细胞凋亡的分子机制1当细胞接受凋亡信号分子(Fas,TNF等)后,凋亡细胞表面信号分子受体相互聚集 并与细胞内的衔接蛋白结合,这些衔接蛋白又募集procaspase聚集在受体部位,procaspase相互活化并产生级联反应使细胞凋亡2下游 caspase活化后作用于靶细胞1作用于底物,裂解核纤层蛋白,导致细胞核形成凋亡小体2裂解DNase结合蛋白,使DNase释放并活化,降解 DNA形成DNA ladder3裂解参与细胞连接或附着的骨架和其他蛋白,使凋亡细胞皱缩、脱落,便于细胞吞噬。4导致膜脂PS重排,便于吞噬细胞识别并吞噬MPF在细胞周期调控过程 中的作用(主要从MPF的发现、结构组成、活化、功能等几方面阐述)MPF发现1细胞融合与PCC实验结论:M期细胞可以诱导PCC,提 示在M期细胞中可能存在一种诱导染色体凝集的因子,称为细胞促分裂因子(MPF)2爪蟾卵子成熟过程:在成熟的卵细胞的细胞质中,必然有一种物质,可以 诱导卵母细胞成熟,他们将这种物质称作促成熟因子,即MPF。MPF结构组成MPF是一种使多种底物蛋白磷酸化的蛋白激酶;由M期 Cyclin-CDK形成的复合物活化:1随Cyclin浓度变化而变化2激酶与磷酸酶的调节3活化的MPF可使更多的MPF活化。功能启动细胞从G2期进入M期的相关事件,包括核膜的破裂、染色质的凝集、有丝分裂纺锤体的形成、诱导靶蛋白的降解。蛋白质的分选运输途径主要有那些两种基本途径;翻译后转运,在细胞质游离核糖体上合成,然后运至膜围细胞器1门控运输(gated transport):如核孔可以选择性的运输大分子物质和RNP复合体,并且允许小分子物质自由进出细胞核。2跨膜运输(transmembrane transport):蛋白质通过跨膜通道进入目的地。如细胞质中合成的蛋白质在信号序列的引导霞,通过线粒体上的转位因子,以解折叠的线性分子进入线粒体。3膜泡运输(vesicular transport):蛋白质被选择性地包装成运输小泡,定向转运到靶细胞器。如内质网向高尔基体的物质运输、高尔基体分泌形成溶酶体、细胞摄入某些营养物质或激素,都属于这种运输方式。 细胞骨架由哪三类成分组成 各有什么主要功能细胞骨架由微丝(microfilament)、微管(microtubule)和中间纤维(intemediate filament)构成1微丝确定细胞表面特征、使细胞能够运动和收缩2微管确定膜性细胞器(membrane-enclosed organelle)的位置、帮助染色体分离和作为膜泡运输的导轨3中间纤维使细胞具有张力和抗剪切力细胞通讯与信号转导的关系细胞通讯是指一个细胞发出的信息通过介质(配体)传递到另一个细胞并与靶细胞相应的受体相互作用,然后通过细胞信号转导产生胞内一系列生理生化变化,最终表现为细胞政体的生物学效应过程。细胞通讯的作用:对于多细胞生物细胞间功能的协调、控制细胞的生长和分裂、组织发生与形态建成是必须的。细胞通讯的三种方式1细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。根据发挥作用的距离又可分为1内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部分作用于靶细胞2旁分泌,细胞通过分泌局部化学介质到细胞外液中,进过局部扩散作用于邻近靶细胞。3自分泌,细胞对自身分泌的物质产生反应。2细胞间接触依赖性的通讯。细胞间直接接触二无需信号分子的释放,代之以通过质膜上的信号分子与靶细胞质膜上的受体分子相互作用来介导细胞见的通讯,包括细胞-细胞黏着、细胞-基质黏着。3动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间互相沟通,通过交换小分子来实现代谢藕联或电藕联。ATP驱动泵的种类1 P-型离子泵所有P-型离子泵都有2个独立的催化亚基,具有ATP结合位点;据大多数还具有2个小的亚基,通常起调节作用,在转运离子过程中,至少有一个催化亚基发生磷酸化和去磷酸化反应,从而改变泵蛋白的构像,实现离子的跨膜运转。由于在泵周期中利用ATP水解能,形成磷酸化中间体,故名P-型离子泵1)钠钾泵:存在于动物细胞质膜上。Na+K+泵具有ATP酶活性,因此又称Na+K+ATPase。Na+K+泵是由2个亚基和2个亚基组成的四聚体。在细胞内侧亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与亚基的另一位点结合,使其去磷酸化,亚基构象再度发生变化,将K+泵进细胞,完成整个循环。Na+依赖的磷酸化和K+依赖的去磷酸化引起的构象变化有序交替发生,每一个循环消耗1个ATP分子,泵出3个Na+泵进2个K+。极少量的乌本苷便可抑制Na+K+泵的活性,Mg+和少量的膜脂有助于Na+K+泵活性的提高,生物氧化抑制剂如氰化物使ATP供应中断,Na+K+泵失去能源以致停止工作2)钙泵又称Ca2+ATPase,是另一类P-型离子泵,分布在所有真核细胞的质膜和某些细胞器膜上,在肌细胞肌质网膜上的Ca2+泵占肌质网膜总整联蛋白80%以上,对细胞引发刺激-反应藕联具有重要作用。Ca2+泵是由1000个氨基酸残基组成的多肽构成的跨膜蛋白,与Na+K+泵的亚基同源,每一泵单位含有10个跨膜螺旋,其中3个螺旋与跨越脂双层的中央通道相连。在Na+K+泵处于非磷酸化状态时,2个通道螺旋中断形成胞质侧结合2个Ca2+的空穴,ATP在胞质侧与其结合位点结合,伴随ATP水解使相邻结构域天冬氨酸残基磷酸化,从而导致跨膜螺旋的重排,跨膜螺旋的重排破坏Ca2+结合位点并释放Ca2+进入膜的另一侧。每消耗一个ATP从细胞质基质转运出2个Ca2+。钙泵主要将Ca2+输出细胞或泵入内质网腔中储存起来,以维持细胞内低浓度的游离Ca2+3)植物细胞,真菌(包括酵母)和细菌细胞质膜上没有Na+K+泵,而有H+泵,将H+泵出细胞,哺乳类胃的泌酸细胞通过H+K+泵将H+泵出和K+泵进细胞2 V-型质子泵广泛存在于动物细胞胞内体、溶酶体膜,破骨细胞和某些肾小管细胞的质膜以及植物、酵母和其他真菌细胞液泡膜上,又称膜泡质子泵。含有几种不同的跨膜和胞侧亚基,在功能上都是只转运质子,并在转运H+过程中泵蛋白不形成磷酸化的中间体。V-型离子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度泵出H+进入细胞器,以维持细胞质基质pH中性和细胞器内pH酸性3 F-型离子泵存在于细菌质膜、线粒体内膜和叶绿体类囊体膜上,含有几种不同的跨膜和胞侧亚基,在功能上只转运质子,并在转运H+过程中泵蛋白不形成磷酸化的中间体。F-型离子泵使H+顺浓度梯度运动,将所释放的能量与ATP合成藕联起来,如线粒体的氧化磷酸化和叶绿体的光和磷酸化作用4 ABC超家族是一类ATP驱动泵,但有更多成员。ABC超家族含有几百种不同的转运蛋白,广泛分布在从细菌到人类各种生物体中。每种ABC转运蛋白对于单一底物或相关底物的基团是有特异性的。这些底物或许是离子、单糖、氨基酸、磷脂、肽、多糖甚是蛋白质。所有ABC转运蛋白都共享一种由4个“核心”结构域组成的结构模式:2个跨膜结构域(T),形成运输分子的跨膜通道;2个胞质侧ATP结合域(A)。ABC蛋白的每个T结构域由6个跨膜螺旋组成,形成跨膜转运通道并决定每个ABC蛋白的底物特异性。真核细胞第一个被鉴定出来的ABC蛋白来自对肿瘤细胞和抗药性的培养细胞的研究。这些细胞由于基因扩增高水平地表达一种多药抗转运蛋白。这种蛋白能利用水解ATP的能量将各种药物从细胞质内转运到细胞外细胞质膜的基本功能1为细胞的生命活动提供相对稳定的内环境2选择性的物质运输、包括代谢底物的输入与代谢产物的排出,其中伴随着能量的传递3提供细胞识别位点,并完成细胞内外信号跨膜转导4为多种酶提供结合位点,使酶促反应高效而有序的进行5介导细胞与细胞、细胞与胞外基质之间的连接6参与形成具有不同功能的细胞表面特化结构7膜蛋白的异常与某些遗传病、恶性肿瘤,甚至神经退行性疾病相关,很多膜蛋白可作为疾病治疗的药物靶标蛋白质分选途径与类型两条途径1翻译后转运途径:在细胞质基质游离核糖体上完成多肽链的合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体及细胞核,或成为细胞质基质的可溶性驻留蛋白和支架蛋白。2共翻译转运途径:蛋白质合成在游离核糖体上起始之后由信号肽引导转移至糙面内质网,然后新生肽边合成边进入糙面内质网中,再经高尔基体加工包装运至溶酶体、细胞质膜或分泌到细胞外。4种类型1蛋白质的跨膜转运主要是指在细胞质基质中合成的蛋白质转运到内质网、线粒体、质体和过氧化物酶体等细胞器2膜泡运输蛋白质通过不同类型的转运小泡从糙面内质网合成部位转运至高尔基体,进而分选转运至细胞的不同部位3选择性的门控转运4细胞质基质中的蛋白质的转运信号转导系统通过细胞表面受体介导的信号途径由下列4个步骤组成1不同形式的胞外的信号刺激首先被细胞表面特异性受体所识别,特异性是识别反应的主要特征。2胞外信号(第一信使)通过适当的分子开关机制实现信号的跨膜转导,产生细胞内第二信使或活化的信号蛋白。3信号放大:信号传递至胞内效应器蛋白,引发细胞内信号放大的级联反应。4细胞反应由于受体的脱敏或受体下调,启动反馈机制从而终止或降低细胞反应细胞凋亡与细胞坏死的区别细胞凋亡过程中,细胞质膜反折包裹断裂的染色质片段或细胞器,形成众多的凋亡小体,凋亡小体则为邻近的细胞所吞噬,整个过程中,细胞质膜的整合性保持良好,死亡细胞的内容物不会逸散到胞外环境中,因而不发生炎症反应。相反,细胞坏死时,细胞体积膨胀,细胞质膜发生渗漏,细胞的内容物包括膨大和破碎的细胞器,以及染色质片段释放到细胞外,导致炎症反应。受体酪氨酸激酶RTK受体酪氨酸激酶又称酪氨酸蛋白激酶受体,是细胞表面一大类重要受体家族.RTKs的多肽链只跨膜一次,胞外区是结合配体的结构域,胞内区肽段是酪氨酸蛋白激酶的催化部位并具有自磷酸化位点。 配体RTK使其激活形成二聚体受体自磷酸化RTK磷酸化的酪氨酸结合带有SH2结构域的信号蛋白形成SH3结构并使信号内传活化GEF活化Ras活化Raf活化MAPKK磷酸化MAPK使其活化并进入细胞核导致细胞核转录因子磷酸化调节基因表达CDK激酶在细胞周期中的调控功能细胞周期蛋白(cyclin)E和周期蛋白依赖性激酶(CDK)2的复合物CyclinE-CDK2为细胞从G1期进入S期的关键激酶复合物,在细胞从G1期进入S期过程中起着至关重要的作用。它通过磷酸化其下游一系列底物如Rb、CDC6、NPAT和P107等而使细胞启动DNA合成,从而使细胞不可逆转地进入S期。CyclinE-CDK2除了受到其下游RB/E2F通路的正调控外,同时也受细胞中其他一些因子的调控,如CIP/KIP家族蛋白的负调控作用,以及Skp2-SCF介导的泛素化降解作用等蛋白合成过程中细胞质基质及细胞内各种膜性细胞器在结构与功能上的联系高尔基体膜的厚度和化学成分介于内质网膜与细胞膜之间.在活细胞中,这三种膜可以互相转变.内质网以类似于出芽的形式形成具有膜的小泡,小泡离开内质网,移动到高尔基体与高尔基体融合,成为高尔基体的一部分.高尔基体又以出芽方式形成小泡,移动到细胞膜与细胞膜融合,成为细胞膜的一部分.细胞内的生物膜在结构上具有一定的连续性.细胞在核糖体上合成的分泌蛋白,首先进入内质网腔内,加工形成比较成熟的蛋白质.然后内质网以出芽方式形成具膜的小泡将它运输到高尔基体进行进一步的加工.经高尔基体加工成熟的蛋白质再形成分泌小泡,通过细胞膜排出细胞外面.在这个过程中,内质网膜可通过小泡转化成高尔基体膜,高尔基体膜又可通过分泌小泡形成细胞膜.在蛋白质的合成,运输与分泌过程中还需要能量,这些能量主要是由线粒体通过有氧呼吸合成的ATP提供的.线粒体的内膜上有进行有氧呼吸所需的各种酶.由此可见,细胞内的各种生物膜不但在结构上互相连系,在功能上也是既有分工又相互联系的.各种生物膜的分工合作,相互配合是细胞生命活动协调进行的结构与功能的基础.线粒体和叶绿体的起源论据:1线粒体和叶绿体的基因组在大小、形态和结构方面与细菌的相似2线粒体和叶绿体有自己完整的蛋白质合成系统,能独立合成蛋白质3线粒体和叶绿体的两层被膜有不同的进化来源,外膜和内膜的结构和成分差异很大4线粒体和叶绿体能以分裂的方式进行繁殖,这与细菌的繁殖方式类似5线粒体和叶绿体能在异源细胞内长期生存6线粒体的祖先可能来自反硝化副球菌或紫色非硫光合细菌7发现介于胞内共生蓝藻与叶绿体之间的结构蓝小体,其特征在很多方面可作为原始蓝藻向叶绿体演化的佐证受体酪氨酸激酶及RTK-Ras蛋白信号通路受体酪氨酸激酶(RTK)又称酪氨酸蛋白激酶受体,是细胞表面一大类重要受体家族,他的胞外配体是可溶性或膜结合的多肽或蛋白类激素。RTKs主要功能是控制细胞生长、分化而不是调控细胞中间代谢。所有RTKs都由一个细胞外结构域、一个疏水的跨膜螺旋和一个胞质结构域组成。绝大多数的RTKs是单体蛋白,配体在胞外与受体结合并引发构象变化,但单个跨膜螺旋无法传递这种构象变化,因此配体的结合导致受体二聚化形成同源或异源二聚体,有些单体性配体与细胞外基质带负电的多糖组分肝素表面紧密结合,这有利于增强配体与单体性受体的结合并形成二聚化的配体-受体复合体;有些配体是二聚体,它们的结合使2个单体性受体直接聚在一起,激素与这类受体结合改变其构象使之活化。RTKs在静息状态激酶活性是很低的,当受体二聚化后,激活受体的蛋白酪氨酸激酶活性,进而在二聚体内彼此交叉磷酸化受体胞内肽段的一个或多个酪氨酸残基,也称为受体的自磷酸化。磷酸化的受体酪氨酸残基进一步导致构像改变,或者有利于ATP的结合,或者有利于其他受体结合其他蛋白质底物。在激活的RTKs内,许多磷酸酪氨酸残基作为多种与下游信号传递相关的信号蛋白的锚定位点,可被含有SH2结构域的胞内信号蛋白所识别并与之结合,由此启动信号传导RTK-Ras信号通路可概括为如下模式:配体RTK接头蛋白GEF(鸟苷酸交换因子)RasRaf(MAPKKK 丝氨酸|苏氨酸蛋白激酶)MAPKK(一种双重特异的蛋白激酶)MAPK(有丝分裂原活化蛋白激酶)进入细胞核其他激酶或基因调控因子(转录因子)的磷酸化修饰,对基因表达产生多种效应细胞通讯与信号转导的关系细胞通讯是指一个细胞发出的信息通过介质(配体)传递到另一个细胞并与靶细胞相应的受体相互作用,然后通过细胞信号转导产生胞内一系列生理生化变化,最终表现为细胞政体的生物学效应过程。细胞通讯的作用:对于多细胞生物细胞间功能的协调、控制细胞的生长和分裂、组织发生与形态建成是必须的。细胞通讯的三种方式:1细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。根据发挥作用的距离又可分为1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部分作用于靶细胞2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,进过局部扩散作用于邻近靶细胞。3)自分泌,细胞对自身分泌的物质产生反应。2细胞间接触依赖性的通讯。细胞间直接接触二无需信号分子的释放,代之以通过质膜上的信号分子与靶细胞质膜上的受体分子相互作用来介导细胞见的通讯,包括细胞-细胞黏着、细胞-基质黏着。3动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间互相沟通,通过交换小分子来实现代谢藕联或电藕联。G蛋白:三聚体GTP结合调节蛋白的简称,位于质膜内胞浆一侧,由G、G、G3个亚基组成,G和G亚基以异二聚体存在,G和G亚基分别通过共价结合脂分子锚定于膜上,G亚基本身具有GTPase活性,是分子开关蛋白。当配体与受体结合,三聚体G蛋白解离,并发生GDP与GTP交换,游离的G-GTP处于活化的开启态导致结合并激活效应器蛋白,从而传递信号;当G-GTP水解形成G-GDP时,则处于失活的关闭态,终止信号传递并导致三聚体G蛋白的重新组装,系统恢复进入静息状态G蛋白藕联受体介导的信号转导由G蛋白藕联受体所介导的细胞信号通路主要包括:以cAMP为第二信使的信号通路、以肌醇-1,4,5-三磷酸和二酰甘油作为双信使的磷脂酰肌醇信号通路和G蛋白藕联离子通道的信号通路。1以cAMP为第二信使的信号通路在该信号通路中,G亚基的首要效应酶是腺苷磷酸环化酶,通过腺苷磷酸环化酶活性的变化调节靶细胞内第二信使cAMP的水平,进而影响信号通路的下游事件。腺苷酸环化酶在Mg2+或Mn2+存在条件下,催化ATP生成cAMP,在正常情况下细胞内cAMP的浓度很小,当腺苷酸环化酶激活后,cAMP水平急剧增加,使靶细胞产生快速应答;在细胞内还有另一种酶即环腺苷磷酸二酯酶(PDE),可降解cAMP生成5-AMP,导致细胞内cAMP水平下降而终止反应。cAMP浓度在细胞内的迅速调节是细胞快速应答胞外信号的重要分子基础2磷脂酰肌醇双信使信号通路其信号转导是通过效应酶磷脂酶C完成的。细胞磷脂酰肌醇代谢途径是:双信使IP3和DAG的合成来自膜结合的磷脂酰肌醇(PI)。细胞膜结合的PI激酶将肌醇环上特定的羟基磷酸化,形成磷脂酰肌醇-4-磷酸(PIP)和磷脂酰肌醇-4,5-二磷酸(PIP2),胞外信号分子(激素)与Go或Gq蛋白藕联的受体结合,通过前面所述的G蛋白开关机制引起膜上磷脂酶C的异构体(PLC)的活化,致使质膜上磷脂酰肌醇-4,5-二磷酸(PIP2)被水解成1,4,5-肌醇三磷酸(IP3)和二酰甘油(DAG)两个第二信使。IP3刺激细胞内质网释放Ca2+进入细胞质基质,使胞内Ca2+浓度升高,DAG激活蛋白激酶C(PKC),活化的PKC进一步使底物蛋白磷酸化,并可活化Na+/H+交换引起细胞内pH升高,以磷酸酰肌醇代谢为基础的信号通路的最大特点是胞外信号被膜受体接受后,同时产生两个胞内信使,分别激活两个不同的信号通路,实现细胞对外界信号的应答,因此称为“双信使系统”3G蛋白藕联受体介导离子通道有些神经递质的受体本身就是离子通道,包括某些谷氨酸盐、血液中的复合胺以及神经-肌肉突触处的N-型乙酰胆碱受体。但许多神经递质受体是G蛋白藕联受体,有些效应器蛋白是Na+或K+通道。神经递质与受体结合引发G蛋白藕联的离子通道的开启或关闭,进而导致膜电位的改变。其他神经递质受体以及嗅觉受体和眼睛的光受体是通过第二信使的作用间接调节离子通道活性的G蛋白藕联受体。横纹肌细胞N-型乙酰胆碱受体结合乙酰胆碱后产生动作电位,引发肌肉收缩,与此相反,乙酰胆碱与心肌M-型乙酰胆碱受体结合后会因为引发肌细胞膜超级化而减缓心肌收缩速率。M-型乙酰胆碱受体与Gi蛋白藕联,受体的活化导致Gi蛋白联系的K+通道开放,K+流出引起质膜超级化细胞质膜的基本功能1为细胞的生命活动提供相对稳定的内环境2选择性的物质运输、包括代谢底物的输入与代谢产物的排出,其中伴随着能量的传递3提供细胞识别位点,并完成细胞内外信号跨膜转导4为多种酶提供结合位点,使酶促反应高效而有序的进行5介导细胞与细胞、细胞与胞外基质之间的连接6参与形成具有不同功能的细胞表面特化结构7膜蛋白的异常与某些遗传病、恶性肿瘤,甚至神经退行性疾病相关,很多膜蛋白可作为疾病治疗的药物靶标受体介导的胞吞作用物质,结构,名称,来源根据胞吞的物质是否有专一性,可将胞吞作用分为受体介导的胞吞作用和非特异性的胞吞作用。受体介导的胞吞作用是大多数动物细胞通过网格蛋白有被小泡从胞外基质摄取特定大分子的有效途径。被转运的大分子物质(配体)首先与细胞表面互补性的受体相结合,形成受体-配体复合物并引发细胞质膜局部化作用,首
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电商网站用户注册协议
- 酒店住宿协议及账单结算流程规范
- 农村社区设施改造共建协议书
- 护士年度思想总结范稿
- 幼儿园大班谈话活动方案
- 小白兔救小袋鼠400字(11篇)
- 合作社经营权租赁协议
- 糖尿病饮食指南
- 学校体育年度方案
- 文化建设规划方案
- 欣灵变频器恒压供水参数表
- 2025兰州市西固区辅警考试试卷真题
- 工程合同平移协议
- 2025年锅炉水处理作业人员G3证考试试题题库(200题)含答案
- 饲料仓库卫生管理制度
- 酒店智能化系统方案设计
- 2025浙江慈溪市水务集团限公司招聘国企业人员19人易考易错模拟试题(共500题)试卷后附参考答案
- 大理白族自治州2025届小升初总复习数学测试卷含解析
- 2025吉林省安全员C证考试(专职安全员)题库及答案
- 电钻清洗消毒流程
- 促进教师微课题研究合作的策略
评论
0/150
提交评论