




免费预览已结束,剩余8页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2012-2013学年湖北省荆门市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1(5分)(2005重庆一模)若集合m=x|x20,n=x|x1|2,则mn=()ax|2x2bx|x2cx|1x2dx|1x3考点:交集及其运算专题:计算题分析:由不等式的解法,易得m、n,进而由交集的意义,可得答案解答:解:m=x|x20=x|x2,n=x|x1|2=x|1x3,所以mn=x|1x2,故选c点评:本题考查集合间的交集的运算,应注意不等式的正确求解,并结合数轴判断集合间的关系2(5分)设i是虚数单位,复数z=,则在复平面内对应的点在()a第一象限b第二象限c第三象限d第四象限考点:复数代数形式的乘除运算;复数的代数表示法及其几何意义专题:计算题分析:利用两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,化简复数等于1+i,此复数复平面内对应的点的坐标为(1,1),由此可得结论解答:解:复数z=1+i,则此复数复平面内对应的点的坐标为(1,1),故选a点评:本题主要考查复数代数形式的混合运算,复数与复平面内对应点之间的关系,属于基础题3(5分)(2011吉安二模)已知x与y之间的一组数据是()x0123y2468则y与x的线性回归方程y=bx+a必过点()a(2,2)b(1,2)c(1.5,0)d(1.5,5)考点:线性回归方程专题:计算题分析:做出这组数据的x,y的平均数,得到这组数据的样本中心点,因为线性回归直线一定过样本中心点,得到y与x的线性回归方程y=bx+a必过点样本中心点解答:解:根据所给的表格得到,这组数据的样本中心点是(1.5,5)线性回归直线一定过样本中心点,y与x的线性回归方程y=bx+a必过点(1.5,5)故选d点评:本题考查线性回归方程,考查线性回归直线一定过样本中心点,本题是一个基础题,这种题目可以单独出现也可以作为解答题目的一部分4(5分)(2013威海二模)一算法的程序框图如图所示,若输出的,则输入的x可能为()a1b1c1或5d1或1考点:选择结构专题:图表型分析:根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是求分段函数的函数值利用输出的值,求出输入的x的值即可解答:解:这是一个用条件分支结构设计的算法,该程序框图所表示的算法的作用是求分段函数y=的函数值,输出的结果为,当x2时,sin=,解得x=1+12k,或x=5+12k,kz,即x=1,7,11,当x2时,2x=,解得x=1(不合,舍去),则输入的x可能为1故选b点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,注意读懂框图的作用,考查计算能力5(5分)在面积为s的abc的边ab上任取一点p,则pbc的面积大于的概率是()abcd考点:几何概型专题:概率与统计分析:首先分析题目求在面积为s的abc的边ab上任取一点p,则pbc的面积超过 的概率,即可考虑画图求解的方法,然后根据图形分析出基本的事件空间与事件的几何度量是什么再根据几何关系求解出它们的比例即可解答:解:记事件a=pbc的面积超过,基本事件空间是三角形abc的面积,(如图)事件a的几何度量为图中阴影部分的面积(de是三角形的中位线),因为阴影部分的面积是整个三角形面积的 ,所以p(a)=1=故选a点评:本题主要考查了几何概型由这个题目可以看出,解决有关几何概型的问题的关键是认清基本事件空间是指面积还是长度或体积,同学们需要注意6(5分)某路段检查站监控录象显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为如图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的约有()a100辆b200辆c300辆d400辆考点:频率分布直方图专题:计算题;概率与统计分析:根据小矩形的面积之和,算出位于6090的前3组数的频率之和为0.7,从而得到位于90110的数据的频率之和为10.7=0.3,再由频率计算公式即可算出这一时段内通过该站的汽车中速度不小于90km/h 的车辆数解答:解:位于6070、7080、8090的小矩形的面积分别为s1=0.0110=0.1,s2=0.0210=0.2,s3=0.0410=0.4位于6070、7080、8090的据的频率分别为0.1、0.2、0.4可得位于6090的前3组数的频率之和为0.1+0.2+0.4=0.7由此可得位于90110的数据的频率之和为10.7=0.3位于90110的频数为10000.3=300,即在这一时段内通过该站的汽车中速度不小于90km/h 的约有300辆故选:c点评:本题给出频率分布直方图,求该时段内通过该站的汽车中速度不小于90km/h的车辆数,着重考查了频率分布直方图的理解和频率计算公式等知识,属于基础题7(5分)函数y=xsinx,x,的最大值是 ()a1b2cd4考点:利用导数研究函数的极值专题:计算题分析:函数y=x在给定区间上是增函数,而y=sinx在给定区间上减函数,在同一个区间上增函数减去一个减函数则整个这个函数在给定区间上是增函数,这样最大值就在端点处取到解答:解:y=x在,上单调递增,y=sinx在,上单调递增y=xsinx在,上单调递增,即最大值为f()=,故答案为故选c点评:本题考查了利用函数的单调性求函数的最值问题,属于基础题8(5分)已知双曲线=1(a0,b0)的离心率为2,该双曲线与抛物线y2=16x的准线交于a,b两点,若|ab|=6,则双曲线的方程为()abcd考点:双曲线的标准方程专题:圆锥曲线的定义、性质与方程分析:根据双曲线方程,求出抛物线的准线方程,利用|ab|=6,即可求得结论解答:解:抛物线y2=16x,2p=16,p=8,=4抛物线的准线方程为x=4设双曲线与抛物线的准线x=4的两个交点a(4,y),b(4,y)(y0),则|ab|=|y(y)|=2y=6,y=3将x=4,y=3代入双曲线c:=1,得,又双曲线=1(a0,b0)的离心率为2,即,b2=3a2由得a2=1,b2=3,双曲线c的方程为,故选a点评:本题考查抛物线,双曲线的几何性质,考查学生的计算能力,属于基础题9(5分)(2013牡丹江一模)下列命题正确的个数()(1)命题“”的否定是“xr,x2+13x”;(2)函数f(x)=cos2axsin2ax的最小正周期为”是“a=1”的必要不充分条件;(3)“x2+2xax在x1,2上恒成立”“(x2+2x)min(ax)max在x1,2上恒成立”(4)“平面向量与的夹角是钝角”的充分必要条件是“”a1b2c3d4考点:命题的真假判断与应用;平面向量数量积的运算专题:阅读型分析:(1)根据特称命题的否定是全称命题来判断是否正确;(2)化简三角函数,利用三角函数的最小正周期判断;(3)用特例法验证(3)是否正确;(4)根据向量夹角为时,向量的数量积小于0,来判断(4)是否正确解答:解:(1)根据特称命题的否定是全称命题,(1)正确;(2)f(x)=cos2ax,最小正周期是=a=1,(2)正确;(3)例a=2时,x2+2x2x在x1,2上恒成立,而(x2+2x)min=32xmax=4,(3)不正确;(4)=|cos,=时0,(4)错误故选b点评:本题借助考查命题的真假判断,考查命题的否定、向量的数量积公式、三角函数的最小正周期及恒成立问题10(5分)(2013辽宁一模)若a1,设函数f(x)=ax+x4的零点为m,g(x)=logax+x4的零点为n,则的取值范围()ab(1,+)c(4,+)d考点:函数零点的判定定理;反函数专题:计算题分析:把函数零点转化为两个函数图象交点的横坐标,根据指数函数与对数函数互为反函数,得到两个函数图象之间的关系求出m,n之间的关系个,根据两者之和是定值,利用基本不等式得到要求的结果解答:解:函数f(x)=ax+x4的零点是函数y=ax与函数y=4x图象交点a的横坐标,函数g(x)=logax+x4的零点是函数y=logax与函数y=4x图象交点b的横坐标,由于指数函数与对数函数互为反函数,其图象关于直线y=x对称,直线y=4x与直线y=x垂直,故直线y=4x与直线y=x的交点(2,2)即是a,b的中点,m+n=4,当m=n=1等号成立,故所求的取值范围是1,+)故选b点评:本题综合函数零点、考查反函数的性质,考查利用基本不等式求最值考查根据函数图象的对称性找到两个函数零点的关系是一道在知识网络的交汇处命题的优秀试题二、填空题(共7小题,每小题5分,满分35分)11(5分)已知a0,b0,且,则a与b的大小关系是ab考点:函数单调性的判断与证明;不等关系与不等式专题:探究型分析:利用条件,将式子进行等价转化为整式不等式,然后判断a,b的大小关系解答:解:因为a0,b0,所以1+a0,1+b0所以由得a(1+b)b(1+a),即a+abb+ab,所以ab故答案为:ab点评:本题的考点是利用不等式确定a,b的大小关系,要求熟练掌握不等式的性质,以及判断大小的方法12(5分)已知函数f(x)=,则此函数的单调递减区间是(5,+)考点:复合函数的单调性专题:函数的性质及应用分析:先求出函数的定义域,然后利用复合函数的单调性确定函数f(x)的单调递减区间解答:解:要使函数有意义,则x26x+50,解得x5或x1,设t=x26x+5,则函数在(,1)上单调递减,在(5,+)上单调递增因为函数,在定义域上为减函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是(5,+)故答案为:(5,+)点评:本题主要考查了复合函数的单调性以及单调区间的求法对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”13(5分)(2005重庆)曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为考点:利用导数研究曲线上某点切线方程专题:计算题分析:欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率从而问题解决解答:解:y=x3,y=3x2,当x=1时,y=3得切线的斜率为3,所以k=3;所以曲线在点(1,1)处的切线方程为:y1=3(x1),即3xy2=0令y=o得:x=,切线与x轴、直线x=2所围成的三角形的面积为:s=(2)4=故答案为:点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题14(5分)若点a的坐标为(3,2),f是抛物线y2=2x的焦点,点m在抛物线上移动时,使|mf|+|ma|取得最小值的m的坐标为(2,2)考点:抛物线的简单性质专题:计算题分析:求出焦点坐标和准线方程,把|mf|+|ma|转化为|ma|+|pm|,利用 当p、a、m三点共线时,|ma|+|pm|取得最小值,把y=2代入抛物线y2=2x 解得x值,即得m的坐标解答:解:由题意得 f( ,0),准线方程为 x=,设点m到准线的距离为d=|pm|,则由抛物线的定义得|ma|+|mf|=|ma|+|pm|,故当p、a、m三点共线时,|mf|+|ma|取得最小值为|ap|=3()=把 y=2代入抛物线y2=2x 得 x=2,故点m的坐标是(2,2),故答案为:(2,2)点评:本题考查抛物线的定义和性质应用,解答的关键利用是抛物线定义,体现了转化的数学思想15(5分)(2013东至县一模)已知f(x)为偶数,且f(2+x)=f(2x),当2x0时,f(x)=2x,若nn*,an=f(n),则a2013=考点:数列的函数特性;函数解析式的求解及常用方法专题:计算题;函数的性质及应用分析:根据题意,可得函数f(x)的最小正周期为4,从而得出f(2013)=f(1),再利用函数为偶函数及当2x0时的表达式,即可求出a2013的值解答:解:f(2+x)=f(2x),f(4+x)=f(2+(2+x)=f(2(2+x)=f(x)又f(x)为偶数,即f(x)=f(x)f(4+x)=f(x),得函数f(x)的最小正周期为4f(2013)=f(5034+1)=f(1)而f(1)=21=,可得f(1)=f(1)=因此,a2013=f(2013)=f(1)=故答案为:点评:本题给出函数的奇偶性和周期,求自变量2013对应的函数值着重考查了函数的奇偶性、周期性和数列的函数特性等知识,属于中档题16(5分)椭圆+=1和双曲线y2=1的公共焦点为f1、f2,p是两曲线的一个交点,那么cosf1pf2的值是考点:圆锥曲线的共同特征专题:计算题分析:先求出公共焦点分别为f1,f2,再联立方程组求出p,由此可以求出 ,最后根据公式cosf1pf2=进行求解即可解答:解:由题意知f1(2,0),f2(2,0),解方程组 得 ,取p点坐标为( ),cosf1pf2=故答案为:点评:本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用,属基础题17(5分)已知曲线方程f(x)=sin2x+2ax(ar),若对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是a1或a0考点:利用导数研究曲线上某点切线方程专题:计算题分析:先将条件“对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线”转化成f(x)=1无解,然后求出2sinxcosx+2a=1有解时a的范围,最后求出补集即可求出所求解答:解:对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线曲线y=f(x)的切线的斜率不可能为1即f(x)=2sinxcosx+2a=1无解0sin2x+1=2a21a0时2sinxcosx+2a=1有解对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是a1或a0故答案为:a1或a0点评:本题解题的关键是对“对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线”的理解,同时考查了利用导数研究曲线上某点切线方程,以及转化的数学思想,属于基础题三、解答题(共5小题,满分65分)18(12分)已知a1,0x1,试比较|loga(1x)|与|loga(1+x)|的大小考点:对数值大小的比较专题:函数的性质及应用分析:先通过讨论两个对数的符号,去掉绝对值,然后利用作差法比较两个对数的大小解答:解:因为0x1,所以01x1,11+x2又a1,所以loga(1x)0,loga(1+x)0所以|loga(1x)|loga(1+x)|=loga(1x)loga(1+x)=loga(1x2),因为01x21,a1,所以loga(1x2)0,即loga(1x2)0所以|loga(1x)|loga(1+x)|0,即|loga(1x)|loga(1+x)|点评:本题考查了利用作差法比较两个数的大小,通过讨论去掉绝对值是解决本题的关键,同时要结合对数函数的性质进行判断19(12分)一个口袋内装有大小相同的6个小球,其中2个红球,记为a1、a2,4个黑球,记为b1、b2、b3、b4,从中一次摸出2个球()写出所有的基本事件;()求摸出的两个球颜色不同的概率考点:列举法计算基本事件数及事件发生的概率专题:计算题分析:()用列举法根据题意用分类列举的方法,列举出所有可能的情况;()由(i),找出符合事件“摸出的两个球颜色不同”的所有基本事件,查出其个数,再由公式求出“摸出的两个球颜色不同”这个事件的概率解答:解:()则从中一次摸出2个球,有如下基本事件:(a1,a2),(a1,b1),( a1,b2),(a1,b3),( a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b33),(b1,b4),(b2,b3),(b2,b4),(b3,b4)共有15个基本事件 (5分)()从袋中的6个球中任取2个,所取的2球颜色不同的方法有:(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)共有8种,故所求事件的概率p=(10分)点评:本题考查列举法计算基本事件数及事件发生的概率,解题的关键是熟练运用分类列举的方法及事件事件的性质将所有的基本事件一一列举出来,运用公式求出概率,列举法求概率适合基本事件数不太多的概率求解问题,本题考查了分类的思想20(13分)已知命题p:|4x|6,q:x22x+1a20(a0),若非p是q的充分不必要条件,求a的取值范围考点:必要条件、充分条件与充要条件的判断;一元二次不等式的解法;绝对值不等式的解法专题:计算题分析:先解不等式分别求出p和q,再由非p是q的充分不必要条件,求a的取值范围解答:解:p:|4x|6,x10,或x2,a=x|x10,或x2q:x22x+1a20,x1+a,或x1a,记b=x|x1+a,或x1a而pq,ab,即,0a3点评:本题考查必要条件、充分条件和充要条件的判断和应用,解题的关键是正确求解不等式21(14分)已知函数f(x)=x3+ax2+bx+c,在(,1),(2,+)上单调递增,在(1,2)上单调递减,当且仅当x4时f(x)x24x+5=g(x)(1)求函数f(x)的解析式;(2)若函数y=m与函数f(x),g(x)的图象共有3个交点,求实数m的取值范围考点:利用导数研究函数的单调性;函数解析式的求解及常用方法;根的存在性及根的个数判断专题:导数的综合应用分析:(1)先利用函数在区间上的单调性,确定1和2是两个极值点,从而确定条件关系求出参数a,b,c(2)求出函数f(x),g(x)的极大值和极小值,结合图象,确定实数m的取值范围解答:解:(1)因为函数在(,1),(2,+)上单调递增,在(1,2)上单调递减,所以1,2是函数的两个极值点,即1,2是f(x)=0的两个根,因为f(x)=3x2+2ax+b,所以由根与系数之间的关系得所以令,则h(x)=3x25x2=(3x+1)(x2),所以函数h(x)在(,),(2,+)上为增函数,在()上为减函数,故,解得c=11所以此时(2)因为,则,故当21m时,直线y=m与函数f(x)的图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《老年卵巢癌规范化手术治疗中国专家共识(2024版)》解读 3
- 江苏旅游职业学院《国际金融》2024-2025学年第一学期期末试卷
- 2025年烈士纪念场所工作手册与招聘考试模拟题及答案解析
- 2025年初创企业市场调研与分析实战指南及模拟题集
- 新乡职业技术学院《常微分方程定性理论》2024-2025学年第一学期期末试卷
- 喀什大学《数字游戏设计流程》2024-2025学年第一学期期末试卷
- 2025年炼油工艺理论在中级考试中的应用
- 2025年电子商务运营岗位招聘面试模拟题集与答案详解
- 四川建筑职业技术学院《物联网应用3》2024-2025学年第一学期期末试卷
- Ⅲ类射线装置辐射工作人员试题库及考核规则
- 2025公务员行政测试题及答案
- 信息安全知识培训课件
- 电池UL1642安全标准解读
- 2025年四川省投资集团有限责任公司招聘笔试备考题库含答案详解
- 2025奢侈品皮具买卖合同
- 变电站防恐课件
- 2025室内设计私人定制合同全面详细版
- 太阳能热水系统问题与解决方案
- (完整版)物理化学上教案
- D型便梁工法(二)
- 疑难路段处理能力及室项目分析
评论
0/150
提交评论