




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用向量法求空间角 3 2 3立体几何中的向量方法 一 复习引入 用空间向量解决立体几何问题的 三步曲 1 建立立体图形与空间向量的联系 用空间向量表示问题中涉及的点 直线 平面 把立体几何问题转化为向量问题 化为向量问题 2 通过向量运算 研究点 直线 平面之间的位置关系以及它们之间距离和夹角等问题 进行向量运算 3 把向量的运算结果 翻译 成相应的几何意义 回到图形 向量的有关知识 3 平面的法向量 1 两向量数量积的定义 a b 2 两向量夹角公式 cos a b 与平面垂直的向量 例1 在Rt AOB中 AOB 90 现将 AOB沿着平面AOB的法向量方向平移到 A1O1B1的位置 已知OA OB Oo1 取A1B1 A1O1的中点D1 F1 求异面直线BD1与AF1所成的角的余弦值 A B O F1 B1 O1 A1 D1 二 知识讲解与典例分析 A B O F1 B1 O1 A1 D1 解 以点O为坐标原点建立空间直角坐标系 如图所示 并设OA 1 则 A 1 0 0 B 0 1 0 F1 0 1 D1 1 所以 异面直线BD1与AF1所成的角的余弦值为 例1 在Rt AOB中 AOB 90 现将 AOB沿着平面AOB的法向量方向平移到 A1O1B1的位置 已知OA OB Oo1 取A1B1 A1O1的中点D1 F1 求异面直线BD1与AF1所成的角的余弦值 x y z 点评 向量法求异面直线所成角的余弦值的一般步骤 建系 求两异面直线的方向向量 求两方向向量的夹角的余弦值 得两异面直线所成角的余弦值 例2 正方体ABCD A1B1C1D1的棱长为1 点E F分别为CD DD1的中点 1 求直线B1C1与平面AB1C所成的角的正弦值 2 求二面角F AE D的余弦值 A A1 C1 B1 D C B D1 E F 例2 1 求直线B1C1与平面AB1C所成的角的正弦值 x y z A D B A1 D1 C1 B1 解 1 以点A为坐标原点建立空间直角坐标系 如图所示 则 A 0 0 0 B1 1 0 1 C 1 1 0 C1 1 1 1 X1 z1 0 X1 y1 0 取x1 1 得y1 z1 1 C 故所求直线B1C1与平面AB1C所成的角的正弦值为 点评 向量法求直线与平面所成角的正弦值的一般步骤 建系 求直线的方向向量 求直线的方向向量与平面的法向量的夹角的余弦值 得直线与平面所成角的正弦值 求平面的法向量 x y z A D C A1 D1 C1 B1 B F E 例2 2 点E F分别为CD DD1的中点 求二面角F AE D的余弦值 取y2 1 得x2 z2 2 2 由题意知 观察图形知 二面角F AE D为锐角 所以所求二面角F AE D的余弦值为 点评 法向量法求二面角的余弦值的一般步骤 建系 求两平面的法向量 求两法向量的夹角的余弦值 得二面角的余弦值 a b 过空间任意一点o分别作异面直线a与b的平行线a 与b 那么直线a 与b 所成的不大于90 的角 叫做异面直线a与b所成的角 异面直线所成的角 范围 1 当与的夹角不大于90 时 异面直线a b所成的角与和的夹角 a b a b o 相等 互补 a b a b o 所以 异面直线a b所成的角的余弦值为 用向量法求异面直线所成角 设两异面直线a b的方向向量分别为和 直线与平面所成的角 范围 相等 互补 所以 直线与平面所成的角的正弦值为 二面角 范围 n1 n2 例3如图 甲站在水库底面上的点A处 乙站在水坝斜面上的点B处 从A B到直线 库底与水坝的交线 的距离AC和BD分别为和 CD的长为 AB的长为 求库底与水坝所成二面角的余弦值 解 如图 化为向量问题 根据向量的加法法则 进行向量运算 于是 得 设向量与的夹角为 就是库底与水坝所成的二面角 因此 所以 回到图形问题 库底与水坝所成二面角的余弦值为 如图 已知 直角梯形OABC中 OA BC AOC 90 直线SO 平面OABC 且OS OC BC 1 OA 2 求 异面直线SA和OB所成的角的余弦值 直线OS与平面SAB所成角 的正弦值 二面角B AS O的余弦值 三 巩固练习 如图 已知 直角梯形OABC中 OA BC AOC 90 SO 平面OABC 且OS OC BC 1 OA 2 求 异面直线SA和OB所成的角的余弦值 OS与平面SAB所成角 的正弦值 二面角B AS O的余弦值 A 2 0 0 于是我们有 2 0 1 1 1 0 1 1 0 0 0 1 B 1 1 0 S 0 0 1 则O 0 0 0 解 以o为坐标原点建立空间直角坐标系 如图所示 x y z C 0 1 0 所以异面直线SA与OB所成的角的余弦值为 3 由 2 知面SAB的法向量 1 1 2 又 OC 平面AOS 是平面AOS的法向量 令 则有 二面角B AS O的余弦值为 2 设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国间硝基苯碘酰氯行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025年中国无尘汽车垫行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国终端滤波器行业发展趋势预测及投资战略咨询报告
- 2025年中国有机发光二极管OLED市场全景评估及投资规划建议报告
- 2023-2028年中国自动感应门行业市场全景评估及投资前景展望报告
- 2025年中国竹筷行业市场调查研究及投资前景展望报告
- 2025年中国电视机盖行业市场运营现状及投资规划研究建议报告
- 2025年中国家用抽排油烟机行业全景评估及投资规划建议报告
- 中国无线遥控IC行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025年中国锅炉温控器行业发展监测及投资战略规划建议报告
- 服装工艺师岗位职责
- 深圳市体育场馆租赁合同
- 福建省厦门市厦门一中2024年数学高一下期末质量检测试题含解析
- 轴承座基本工艺专业课程设计
- MOOC 计算机系统局限性-华东师范大学 中国大学慕课答案
- MOOC 管理学原理-东北财经大学 中国大学慕课答案
- 《校园安全用电知识讲座》课件模板(三套)
- 中国十大名画
- 幼儿园教育事业统计领导小组会议纪要
- 边缘计算在工业互联网中的应用课件
- 家庭生活中的安全隐患及预防方法
评论
0/150
提交评论