2019_2020年新教材高中物理第4章第2节力的分解教案鲁科版必修1.docx_第1页
2019_2020年新教材高中物理第4章第2节力的分解教案鲁科版必修1.docx_第2页
2019_2020年新教材高中物理第4章第2节力的分解教案鲁科版必修1.docx_第3页
2019_2020年新教材高中物理第4章第2节力的分解教案鲁科版必修1.docx_第4页
2019_2020年新教材高中物理第4章第2节力的分解教案鲁科版必修1.docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2节力的分解【学习素养明目标】物理观念:1.理解力的分解和分力的概念.2.理解力的分解是力的合成的逆运算,会用平行四边形定则求分力,会用直角三角形计算分力科学思维:1.掌握力的正交分解的方法.2.会用力的分解分析生产和生活中的实际问题一、分力力的分解1分力:几个力共同作用的效果,若与某一个力的作用效果相同,这几个力即为那个力的分力2力的分解(1)定义:求一个已知力的分力的过程(2)分解法则:平行四边形定则(3)力的分解与合成的关系:力的分解是力的合成的逆运算(4)力的分解的依据:通常根据力的实际作用效果进行分解二、力的正交分解1定义:把一个力分解为两个互相垂直的分力的方法,如图所示2公式:F1Fcos ,F2Fsin .3适用:正交分解适用于各种矢量运算三、力的分解的应用当合力一定时,分力的大小和方向将随着分力间夹角的改变而改变两个分力间的夹角越大,分力就越大1思考判断(正确的打“”,错误的打“”)(1)一个力只能分解为一组分力()(2)力的分解遵循平行四边形定则()(3)某个分力的大小不可能大于合力()(4)力的正交分解是指把一个力分解为水平和竖直两个方向互相垂直的分力的方法()(5)正交分解仅适用于矢量运算()(6)当物体受多个力作用时,常用正交分解法进行力的运算()2(多选)把一个力分解为两个力时,下列说法中正确的是()A一个分力变大时,另一个分力一定要变小B两个分力可同时变大、同时变小C无论如何分解,两个分力不能同时大于这个力的两倍D无论如何分解,两个分力不能同时小于这个力的一半BD由于两分力的大小与两分力夹角有关,所以一分力变大,另一个分力可变大,也可变小,故选项A错误,选项B正确;当两个分力夹角很大时,任何一个分力都可能大于合力的两倍,故选项C错误;两个分力若都小于合力的一半,则三个力不能构成一个封闭的三角形,因而两个分力不能同时小于合力的一半,故选项D正确故选B、D.3将物体所受重力按力的效果进行分解,下列图中错误的是()A B C DC重力产生了使物体下滑的效果及压斜面的效果,故两分力即图中所示,故A正确;重力产生了向两边拉绳的效果,故B正确;重力产生了向两墙壁的挤压的效果,故两分力应垂直于接触面,故C错误;重力产生了拉绳及挤压墙面的效果,故D正确,本题选错误的,故选C.分力力的分解1.力的分解原则(1)一个力分解为两个力,从理论上讲有无数组解因为同一条对角线可以构成的平行四边形有无穷多个(如图所示)(2)把一个力分解成两个分力,仅是一种等效替代关系,不能认为在这两个分力方向有两个施力物体(或受力物体)(3)也不能错误地认为F2就是物体对斜面的压力,因为F2不是斜面受到的力,且性质与压力不同,仅在数值上等于物体对斜面的压力(4)实际分解时,按力的作用效果可分解为两个确定的分力2按实际效果分解的几个实例实例分析(1)拉力F的效果:使物体具有沿水平地面前进(或有前进的趋势)的分力F1竖直向上提物体的分力F2(2)分力大小:F1Fcos ,F2Fsin (1)重力的两个效果: 使物体具有沿斜面下滑(或有下滑的趋势)的分力F1使物体压紧斜面的分力F2(2)分力大小:F1mgsin ,F2mgcos (1)重力的两个效果:使球压紧板的分力F1使球压紧斜面的分力F2(2)分力大小:F1mgtan ,F2(1)重力的两个效果:使球压紧竖直墙壁的分力F1使球拉紧悬线的分力F2(2)分力大小:F1mgtan ,F2(1)重力的两个效果:对OA的拉力F1对OB的拉力F2(2)分力大小:F1mgtan ,F2(1)重力的两个效果:拉伸AB的分力F1压缩BC的分力F2(2)分力大小:F1mgtan ,F2【例1】将一个有确定方向的力F10 N分解成两个分力,已知一个分力F1有确定的方向,与F成30夹角,另一个分力F2的大小为6 N,则在分解时()A有无数组解B有两组解C有唯一解 D无解思路点拨:B由已知条件可得Fsin 305 N,又5 NF210 N,即Fsin 30F2F,所以F1、F2和F可构成如图所示的两个三角形,故此时有两组解,选项B正确【例2】如图所示,光滑斜面的倾角为,有两个相同的小球分别用光滑挡板A、B挡住,挡板A沿竖直方向,挡板B垂直于斜面,则两挡板受到小球的压力大小之比为多大?斜面受到两小球的压力大小之比为多大?思路点拨:解析对小球1所受的重力来说,其效果有二:第一,使小球沿水平方向挤压挡板;第二,使小球垂直压紧斜面因此,力的分解如图甲所示,由此可得两个分力的大小分别为F1Gtan ,F2.对小球2所受的重力G来说,其效果有二:第一,使小球垂直挤压挡板;第二,使小球垂直压紧斜面因此,力的分解如图乙所示,由此可得两个分力的大小分别为F3Gsin ,F4Gcos .由力的相互性可知,挡板A、B受到小球的压力之比为F1F31cos ,斜面受到两小球的压力之比为F2F41cos2. 甲 乙答案1cos 1cos2力的分解的原理与步骤(1)原理:若两个力共同作用的效果与某一个力作用时的效果完全相同,则可用这两个力“替代”这一个力(2)步骤根据已知力的实际效果确定两个分力的方向根据两个分力的方向作出力的平行四边形,确定表示分力的有向线段利用数学知识解平行四边形或三角形,计算分力的大小和方向1.(多选)一根长为L的易断的均匀细绳,两端固定在天花板上的A、B两点若在细绳的C处悬挂一重物,已知ACCB,如图所示,则下列说法中正确的是()A增加重物的重力,BC段先断B增加重物的重力,AC段先断C将A端往左移比往右移时绳子容易断D将A端往右移比往左移时绳子容易断AC研究C点,C点受重物的拉力,其大小等于重物的重力,即TG.将重物对C点的拉力分解为对AC和BC两段绳的拉力,其力的平行四边形如图所示因为ACCB,得FBCFAC.当增加重物的重力G时,按比例FBC增大得较多,所以BC段绳先断,因此A项正确,B项错误将A端往左移时,FBC与FAC两力夹角变大,合力T一定,则两分力FBC与FAC都增大将A端向右移时两分力夹角变小,两分力也变小,由此可知C项正确,D项错误故选A、C.2甲、乙两人用绳子拉船,使船沿OO方向航行,甲用1 000 N的力拉绳子,方向如图所示,要使船沿OO方向航行,乙的拉力最小值为()A500 N B500 NC1 000 N D400 NB要使船沿OO方向航行,甲和乙的拉力的合力方向必须沿OO方向如图所示,作平行四边形可知,当乙拉船的力的方向垂直于OO时,乙的拉力F乙最小,其最小值为F乙minF甲sin 301 000 N500 N,故B正确力的正交分解1正交分解的适用情况:适用于计算三个或三个以上共点力的合成2正交分解的目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决矢量的运算,“分”的目的是为了更好地“合”3力的正交分解的依据:分力与合力的等效性4正交分解的基本步骤(1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力落在坐标轴上(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如图所示(3)分别求出x轴、y轴上各分力的合力,即:FxF1xF2xFyF1yF2y(4)求共点力的合力: 合力大小F,合力的方向与x轴的夹角为,则tan ,即arctan .【例3】在同一平面内共点的四个力F1、F2、F3、F4的大小依次为19 N、40 N、30 N和15 N,方向如图所示,求它们的合力(sin 370.6,cos 370.8)思路点拨:当物体受多个力作用时,一般采用正交分解法求解,可按以下思路:解析如图甲,建立直角坐标系,把各个力分解到这两个坐标轴上,并求出x轴和y轴上的合力Fx和Fy,有甲FxF1F2cos 37F3cos 3727 N,FyF2sin 37F3sin 37F427 N.因此,如图乙所示,合力:乙F38.2 N,tan 1.即合力的大小约为38.2 N,方向与F1夹角为45斜向右上答案38.2 N,方向与F1夹角为45斜向右上正交分解时坐标系的选取原则与方法(1)原则:用正交分解法建立坐标系时,通常以共点力作用线的交点为原点,并尽量使较多的力落在坐标轴上,以少分解力为原则(2)方法:应用正交分解法时,常按以下方法建立坐标轴研究水平面上的物体时,通常沿水平方向和竖直方向建立坐标轴研究斜面上的物体时,通常沿斜面方向和垂直斜面方向建立坐标轴研究物体在杆或绳的作用下转动时,通常沿杆(或绳)方向和垂直杆(或绳)的方向建立坐标轴3如图所示,一物块置于水平地面上,当用与水平方向成60角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成30角的力F2推物块时,物块仍做匀速直线运动若F1和F2的大小相等,则物块与地面之间的动摩擦因数为()A.1 B2C. D1B将两种情况下的力沿水平方向和竖直方向正交分解,因为两种情况下物块均做匀速直线运动,故有F1cos 60(mgF1sin 60),F2cos 30(mgF2sin 30),再由F1F2,解得2,故B正确4大小均为F的三个力共同作用在O点,如图所示,F1、F3与F2之间的夹角均为60,求它们的合力解析以O点为原点、F1的方向为x轴正方向建立直角坐标系分别把各个力分解到两个坐标轴上,如图所示F1xF1,F1y0,F2xF2cos 60,F2yF2sin 60,F3xF3cos 60,F3yF3sin 60,x轴和y轴上的合力分别为FxF1xF2xF3xF1F2cos 60F3cos 60F,FyF1yF2yF3y0F2sin 60F3sin 60F,求出Fx和Fy的合力即是所求的三个力的合力,如图所示F合,代入数据得F合2F,tan ,所以60,即合力F合与F2的方向相同答案2F,与F2的方向相同1如图所示,人拉着旅行箱前进,拉力F与水平方向成角,若将拉力F沿水平和竖直方向分解,则它的水平分力为()AFsin BFcos CFtan DFcot B将F沿水平和竖直方向分解,根据平行四边形定则,水平方向上分力FxFcos ,故B正确,A、C、D错误2(多选)已知力F10 N,把F分解为F1和F2两个分力,已知分力F1与F的夹角为30,则F2的大小()A一定小于10 NB可能等于10 NC可能大于10 N D最小等于5 NBCD当F2与F1垂直时F2最小,其最小值为Fsin 305 N,故F2只要大于等于5 N都是可能的,故B、C、D对,A错3.(多选)如图所示,质量为m的物体在恒力F作用下沿天花板做匀速直线运动,物体与天花板间动摩擦因数为,则物体受到的摩擦力的大小为()AFsin BFcos C(Fsin mg) D(mgFsin )BC先对物体进行受力分析,如图所示,然后对力F进行正交分解水平方向分力F1Fcos 竖直方向分力F2Fsin 由力的平衡可得F1f,F2mgN又由滑动摩擦力公式知fN将F1和F2代入可得fFcos (Fsin mg),故正确选项为B、C.4如图所示,在倾角为的斜面上有一块竖直放置的挡板,在挡板和斜面间搁有一个重为G的光

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论