函数图像应用题选.docx_第1页
函数图像应用题选.docx_第2页
函数图像应用题选.docx_第3页
函数图像应用题选.docx_第4页
函数图像应用题选.docx_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示(1)请你直接写出甲厂的制版费y甲与x的函数解析式,并求出其证书印刷单价(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元? 2. 某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km、8km现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,试通过计算说明哪几个植树点符合要求 3. 因长期干旱,甲水库蓄水量降到了正常水位的最低值为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m3) 与时间t (h) 之间的函数关系求:(1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值? t (h)Q (万m3)ABCD804020Oa4005006004、甲、乙两名自行车爱好者准备在一段长为3 500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系根据图中信息,回答下列问题:(1)乙的速度为_米/秒;(2)当乙追上甲时,求乙距起点多少米(3)求线段BC所在直线的函数关系式 5、小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min设小亮出发x min后行走的路程为y m图中的折线表示小亮在整个行走过程中y与x的函数关系小亮行走的总路程是_,他途中休息了_min当50x80时,求y与x的函数关系式;当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?30501950300080x/miny/mO(第22题)来源6、已知A、B两地的路程为240千米某经销商每天都要用汽车或火车将x吨保鲜品一次 性由A地运往B地受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:货运收费项目及收费标准表运输工具运输费单价元/(吨千米)冷藏费单价元/(吨时)固定费用元/次汽车25200火车1.652280(1)汽车的速度为千米/时,火车的速度为千米/时:(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与 x的函数关系式(不必写出x的取值范围),及x为何值时y汽y火(总费用=运输费+冷藏费+固定费用)(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省? 7、品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由8、对某种商品进行市场调查,1至6月份该种商品的销售情况如下: 销售成本p(元/千克)与销售月份x的关系如图所示:(元/千克)(月份) 销售收入q(元/千克)与销售月份x满足qx15; 销售量m(千克)与销售月份x满足m100x200;试解决以下问题:(1) 根据图形,求p与x之间的函数关系式;(2) 求该种商品每月的销售利润y(元)与销售月份x的函数关系式,并求出哪个月的销售利润最大?9、傅驾车运送荔枝到某地出售,汽车出发前邮箱有油50升,行驶若干小时后,图中在加油站加油若干升,邮箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示(1)汽车行驶小时候加油,中途加油升;(2)求加油前邮箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问邮箱中的油是否够用?请说明理由10、A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用的时间x(小时)之间的函数关系如图所示。(1)小王从B地返回A地用了多少小时?(2)求小王出发6小时后距A地多远?(3)在A、B之间友谊C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C两地相距多远?11、限塑令”后,2008年大约减少塑料消耗约4万吨调查结果分析显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y(万吨)随着时间x(年)逐年成直线上升,y与x之间的关系如图所示.(1)求y与x之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?12、组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量(件)与时间(时)的函数图象如图所示(1)求甲组加工零件的数量y与时间之间的函数关系式(2分)(2)求乙组加工零件总量的值(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)13、省部分地区遭遇干早,为鼓励市民节约用水,我市自来水公司按分段收费标准收费,右图反映的是毎月收取水费y(元与用水量x (吨之间的函数关系(1)小聪家五月份用水7吨,应交水费元:(2)按上述分段收费标准,小聪家三、四月份分别交水费29元和19.8元,问四片份比三月份节约用水多少吨?14、准备印制一批证书现有两个印刷厂可供选择甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷教量收取印刷费甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示(1)请你直接写出甲厂的制版费及与x的函数解析式并求出其证书印刷单价(2)当印制证书8千个时应选择哪个印刷厂节省费用节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?15、心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度V(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,O)作横轴的垂线L,梯形OABC在直线L左侧部分的面积即为t(h)内沙尘暴所经过的路程S(km).(1)当t=4时,求S的值;(2)将S随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由。16、家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象。(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?s(m)AODCBt(min)24001012F一次函数图像应用题例1、某学校组织野外长跑活动,参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威。如图,线段L1,L2分别表示长跑的同学和骑自行车的同学行进的路程y(千米)随时间x(分钟)变化的函数图象。(1)分别求出长跑的同学和骑自行车的同学的行进路程y与时间x的函数表达式;(2)求长跑的同学出发多少时间后,骑自行车的同学就追上了长跑的同学?举一反三1、甲、乙两名自行车爱好者准备在一段长为3 500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系根据图中信息,回答下列问题:(1)乙的速度为_米/秒;(2)当乙追上甲时,求乙距起点多少米(3)求线段BC所在直线的函数关系式 2、甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,(1)甲、乙两人的速度各是多少? (2)求出甲距地的路程与行驶时间之间的函数关系式0122.5102030405060乙甲(3)在什么时间段内乙比甲离地更近?例2、某通讯公司推出、两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示(1)有月租费的收费方式是 (填或),月租费是 元;(2)分别求出、两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议举一反三:某单位准备印制一批证书现有两个印刷厂可供选择甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷教量收取印刷费甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示(1)请你直接写出甲厂的制版费及与x的函数解析式并求出其证书印刷单价(2)当印制证书8千个时应选择哪个印刷厂节省费用节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?例3、甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量与时间的函数图象如图所示(1)求甲组加工零件的数量y与时间之间的函数关系式(2)求乙组加工零件总量的值(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?举一反三1、因长期干旱,甲水库蓄水量降到了正常水位的最低值为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m3) 与时间t (h) 之间的函数关系(1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?t (h)Q (万m3)ABCD804020Oa4005006002、 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上)现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度(厘米)与注水时间(分钟)之间的关系如图2所示解答下列问题:甲槽乙槽图1y(厘米)1914122O46BCDAEx(分钟)图2 4-1 5-1 (1)图2中折线表示_槽中水的深度与注水时间的关系,线段表示_槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点的纵坐标表示的实际意义是_;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计)(直接写出结果)例题4.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图4-1所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A、3km/h和4km/hB、3km/h和3km/h C、4km/h和4km/hD、4km/h和3km/h例题5.汶川灾后重建工作受到全社会的广泛关注,全国各省对口支援四川省受灾市县。我省援建剑阁县,建筑物资先用火车源源不断的运往距离剑阁县180千米的汉中市火车站,再由汽车运往剑阁县。甲车在驶往剑阁县的途中突发故障,司机马上通报剑阁县总部并立即检查和维修。剑阁县总部在接到通知后第12分钟时,立即派出乙车前往接应。经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇。为了确保物资能准时运到,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达剑阁县。下图是甲、乙两车离剑阁县的距离y(千米)与时间x(小时)之间的函数图象。(1)请直接在坐标系中的( )内填上数据。(2)求直线CD的函数解析式,并写出自变量的取值范围。(3)求乙车的行驶速度。DCAB180E1( ) ( )F3(小时)( ) )(千米)甲车乙车 例题6.甲、乙两车在连通A、B、C三地的公路上行驶,甲车从A地出发匀速向C地行驶,同时乙车从C地出发匀速向b地行驶,到达B地并在B地停留1小时后,按原路原速返回到C地在两车行驶的过程中,甲、乙两车距B地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示,请结合图象回答下列问题:(1)求甲、乙两车的速度,并在图中(_)内填上正确的数:(2)求乙车从B地返回到C地的过程中,y与x之间的函数关系式;(3)当甲、乙两车行驶到距B地的路程相等时,甲、乙两车距B地的路程是多少?s(m)AODCBt(min)24001012F例题7.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象。(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?课下练习:17.(2017重庆)A,B两地之间的路程为2380米,甲、乙两人分别从A,B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A,B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行。甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲.乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y与甲出发的时间x之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是 米。17(2017重庆)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需 分钟到达终点B17 (2016重庆)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米 17(2016重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒 11(2015重庆)某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系下列说法中错误的是(_)A小强从家到公共汽车站步行了2公里B小强在公共汽车站等小明用了10分钟C公共汽车的平均速度是30公里/小时D小强乘公共汽车用了20分钟100200204060x(分钟)y(元)1、某移动公司采用分段计费的方法来计算话费,月通话时间(分钟)与相应话费(元)之间的函数图象如图所示:()月通话为100分钟时,应交话费元;()当时,求与之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:() 分别求出表示甲、乙两同学登山过程中路程(千米)与时间(时)的函数解析式;(不要求写出自变量的取值范围)() 当甲到达山顶时,乙行进到山路上的某点处,求点距山顶的距离;() 在()的条件下,设乙同学从处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点处与乙相遇,此时点与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?(千米)(时)612123甲乙125038(元)(公里)甲乙122.5310202530O图象与信息3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度(cm)与燃烧时间的关系如图所示请根据图象所提供的信息解答下列问题:()甲、乙两根蜡烛燃烧前的高度分别是, 从点燃到燃尽所用的时间分别是;()分别求甲、乙两根蜡烛燃烧时与之间的函数关系式;()当为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?4、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:销售渠道每日销量(吨)每吨所获纯利润(元)省城批发1200本地零售2000受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出()若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润(元)与运往省城直接批发零售商的草莓量(吨)之间的函数关系式;(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润5、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:AB成本(万元/套)2528售价(万元/套)3034(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?6、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法若某户居民每月应交电费(元)与用电量(度)的函数图像是一条折线(如图所示),根据图像解答下列问题:() 分别写出和时,与的函数关系式;() 利用函数关系式,说明电力公司采取的收费标准;() 若该用户某月用电62度,则应缴费多少元?() 若该用户某月缴费105元时,则该用户该月用了多少度电?01001306589y(元)x(度)7、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场一水果经销商购进了两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售预计每箱水果的盈利情况如下表:种水果/箱种水果/箱甲店11元17元乙店9元13元有两种配货方案(整箱配货):方案一:甲、乙两店各配货10箱,其中种水果两店各5箱,种水果两店各5箱;方案二:按照甲、乙两店盈利相同配货,其中种水果甲店 箱,乙店 箱;种水果甲店 箱,乙店 箱(1)如果按照方案一配货,请你计算出经销商能盈利多少元;(2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?05202630售出土豆数(千克)手中持有钱数(元)8、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图像解答下列问题(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售价格是多少?(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是元,问他一共带了多少千克土豆9、某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工每人每天只能做一项工作若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出)已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元设每天安排名工人进行蔬菜精加工(1)求每天蔬菜精加工后再出售所得利润(元)与(人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为元,求与的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?10、小张骑车往返于甲、乙两地,距甲地的路程(千米)与时间(小时)的函数图象如图所示(1)小张在路上停留小时,他从乙地返回时骑车的速度为千米时(2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止,途中小李与小张共相遇3次请在图中画出小李距甲地的路程(千米)与时间(小时)的函数的大致图象() 小王与小张同时出发,按相同路线前往乙地,距甲地的路程(千米)与时间(小时)的函数关系式为小王与小张在途中共相遇几次?(小时)(千米)请你计算第一次相遇的时间11、小文家与学校相距1000米某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校下图是小文与家的距离(米)关于时间(分钟)的函数图象请你根据图象中给出的信息,解答下列问题:x(分钟)0y(米)10008006004002002 4 5 6 8 10AB(1)小文走了多远才返回家拿书?(2)求线段所在直线的函数解析式;(3)当分钟时,求小文与家的距离12、我市某乡两村盛产柑桔,村有柑桔200吨,村有柑桔300吨现将这些柑桔运到两个冷藏仓库,已知仓库可储存240吨,仓库可储存260吨;从村运往两处的费用分别为每吨20元和25元,从村运往两处的费用分别为每吨15元和18元设从村运往仓库的柑桔重量为吨,两村运往两仓库的柑桔运输费用分别为元和元(1)请填写下表,并求出与之间的函数关系式;收地运地总计吨200吨300吨总计240吨260吨500吨(2)试讨论两村中,哪个村的运费较少;(3)考虑到村的经济承受能力,村的柑桔运费不得超过4830元在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘图是反映所挖河渠长度与挖掘时间之间关系的部分图象请解答下列问题:(1)乙队开挖到30米时,用了小时开挖6小时时,甲队比乙队多挖了米;(2)请你求出:甲队在的时段内,与之间的函数关系式;乙队在的时段内,与之间的函数关系式;开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米时,结果两队同时完成了任务乙甲(时)问甲队从开挖到完工所挖河渠的长度为多少米?14、右图是某汽车行驶的路程S(km)与时间t(min)的 函 数关系图.观察图中所提供的信息,解答下列问题:091630t/minS/km4012(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16t30时,求S与t的函数关系式.15、如图,分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。(1)B出发时与A相距 千米。(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时。(1分)(3)B出发后 小时与A相遇。S(千米)t(时)0 1022.57.50.531.5lBlA(4)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米。在图中表示出这个相遇点C。(5)求出A行走的路程S与时间t的函数关系式。16、2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕20日上午9时,参赛龙舟从黄陵庙同时出发其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示甲队在上午11时30分到达终点黄柏河港(1)哪个队先到达终点?乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远? 17、刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0a3)小时再往A镇参加救灾。一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4a)千米/时。若二分队在营地不休息,问二分队几小时能赶到A镇?若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?下列图象中,分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。18、2008年5月12日14时28分四川汶川发生里氏8.0级强力地震某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时)图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图像请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 小时;(2)甲组的汽车排除故障后,立即提速赶往灾区请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定19、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系(第19题)ABCDOy/km90012x/h4根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇求第二列快车比第一列快车晚出发多少小时?20、为预防“手足口病”,某校对教室进行“药熏消毒”已知药物燃烧阶段,室内每立方米空气中的含药量(mg)与燃烧时间(分钟)成正比例;燃烧后,与成反比例(如图所示)现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg据以上信息解答下列问题:(1)求药物燃烧时与的函数关系式(2)求药物燃烧后与的函数关系式(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?21、抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库。已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨。从甲、乙两库到A、B两库的路程和运费如下表(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)(1)若甲库运往A库粮食吨,请写出将粮食运往A、B两库的总运费(元)与(吨)的函数关系式(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?型 号甲乙丙进价(万元/台)0.91.21.1售价(万元/台)1.21.61.322、“512”汶川大地震后,某健身器材销售公司通过当地“红十字会”向灾区献爱心,捐出了五月份全部销售利润已知该公司五月份只售出甲、乙、丙三种型号器材若干台,每种型号器材不少于8台,五月份支出包括这批器材进货款64万元和其他各项支出(含人员工资和杂项开支)3.8万元.这三种器材的进价和售价如下表,人员工资y1(万元)和杂项支出y2(万元)分别与总销售量x(台)成一次函数关系(如图).(1)求y1与x的函数解析式;0200.20.31.2By1y2=0.005x+0.3x(台)y(万元)(2)求五月份该公司的总销售量;(3)设公司五月份售出甲种型号器材t台,五月份总销售利润为W(万元),求W与t的函数关系式;(销售利润销售额进价其他各项支出)(4)请推测该公司这次向灾区捐款金额的最大值.23、我市某工厂A车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶由于机器损耗等原因,当每天生产的帐篷达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元设生产这批帐篷的时间为x天,每天生产的帐篷为y顶(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该项车间捐献给灾区多少钱?24、某住宅小区计划购买并种植500株树苗,某树苗公司提供如下信息:信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等. 信息二:如下表:树苗杨树丁香树柳树每棵树苗批发价格(元)323两年后每棵树苗对空气的净化指数0.40.10.2设购买杨树、柳树分别为株、株.(1) 用含的代数式表示;(2)若购买这三种树苗的总费用为w元,要使这500株树苗两年后对该住宅小区的空气净化指数之和不低于120,试求w的取值范围.25、通过市场调查,一段时间内某地区某一种农副产品的需求数量(千克)与市场价格(元/千克)()存在下列关系:(元/千克)5101520(千克)4500400035003000又假设该地区这种农副产品在这段时间内的生产数量(千克)与市场价格(元/千克)成正比例关系:()现不计其它因素影响,如果需求数量等于生产数量,那么此时市场处于平衡状态(1)请通过描点画图探究与之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量与市场价格的函数关系发生改变,而需求数量与市场价格的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元请问这时该农副产品的市场价格为多少元?16某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?25.(2009年咸宁市)某车站客流量大,旅客往往需长时间排队等候购票经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数(人)与售票时间(分)的函数关系如图所示;每个售票窗口票数(人)与售票时间(分)的函数关系如图所示某天售票厅排队等候购票的人数(人)与售票时间(分)的函数关系如图所示,已知售票的前分钟开放了两个售票窗口(1)求的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?143124030078ax/分y/人OOO(图)(图)(图)x/分y/人x/分y/人5、已知:直线y=kx(k0)经过点(3,-4).(1)求k的值;(2)将该直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相离(点O为坐标原点),试求m的取值范围.7、已知反比例函数(为常数,)的图象经过点P(3,3),O为坐标原点。(1)求的值;(2)过点P作PMx轴于M,若点P在反比例函数图象上,并且,试求Q点的坐标。(第23题)H12、如图,在直角坐标平面内,函数(, 是常数)的图象经过,其中过点作AC轴于,过点作BD轴于且与AC 相交于点H,连结, ,(1)求m的值; 若ABD的面积为4,求BCD的面积.15、在平面直角坐标系中,点是坐标原点.已知等腰梯形,|,点,等腰梯形的高是1,且点、都在第一象限。(1) 请画出一个平面直角坐标系,并在此坐标系中画出等腰梯形;(2) 直线与线段交于点,点在直线上,当时,求的取值范围.19、已知一次函数与反比例函数的图象交于点和(1)求反比例函数的关系式;(2)求点的坐标;(3)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当为何值时,一次函数的值大于反比例函数的值?26、(2007漳州)如图,已知一次函数()的图象分别交轴、轴于点,且与反比例函数的图象在第二象限交于点,轴于点(1) ,一次函数的表达式为 ;(2)试证明线段是的中位线;(3)若点从点沿线段向运动,同时点从点沿线段向点运动,运动速度均为1个单位/秒设运动时间为秒,是否存在值,使得为顶点的三角形与相似?若存在,求出值;若不存在,请说明理由AOCDxBy(第26题图)AOCDxBy(第26题备用图)29、(2008三明)已知一次函数yx3的图象与反比例函数y都经过点A(a,4)(1)求a和k的值;(2)判断点B(2,)是否在该反比例函数的图象上54、(2007福州)如图12,已知直线与双曲线交于两点,且点的横坐标为(1)求的值;(2)若双曲线上一点的纵坐标为8,求的面积;图12(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标1.如图,A、B两点在函数(x0)的图像上。(1)求m的值及直线AB的解析式;(2)如果一个点的横纵坐标均为整数,那么我们称这个点为格点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论