分解因式技巧掌握.doc_第1页
分解因式技巧掌握.doc_第2页
分解因式技巧掌握.doc_第3页
分解因式技巧掌握.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分解因式技巧掌握:分解因式是多项式的恒等变形,要求等式左边必须是多项式分解因式的结果必须是以乘积的形式表示每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。2提公因式法基本步骤:(1)找出公因式(2)提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式提完公因式后,另一因式的项数与原多项式的项数相同。四个注意因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举下例,可供参考。例1 把-a2-b2+2ab+4分解因式。解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b)2-4=-(a-b+2)(a-b-2)这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y(x+1)(4x2-9)的错误,因为4x2-9还可分解为(2x+3)(2x-3)。考试时应注意:在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。分式基本概念定义形如A/B,A、B是整式,B中含有字母且B不等于0的式子叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。如x/y是分式,还有x(y+2)/y也是分式注意掌握分式的概念应注意:判断一个式子是否是分式,不要看式子是否是A/ B的形式,关键要满足:(1)分式的分母中必须含有字母。(2)分母的值不能为零。若分母的值为零,则分式无意义。由于字母可以表示不同的数,所以分式比分数更具有一般性。1.约分:把一个分式的分子和分母的公因式约去的过程为约分。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 2.分式的乘法法则:两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。3. 分式的加减法法则:同分母的分式相加减,分母不变,把分子相加减。4.异分母分式的加减法法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。备注:异分母的分式可以化成同分母的分式,这一过程叫做通分。通分的关键点通分的关键是确定几个分式的最简公分母,其步骤如下:1.将各个分式的分母分解因式;2.取各分母系数的最小公倍数;3.凡出现的字母或含有字母的因式为底的幂的因式都要取;4.相同字母或含字母的因式的幂的因式取指数最大的;5.将上述取得的式子都乘起来,就得到了最简公分母;基本性质1.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=(A*C)/(B*C), A/B=(AC)/(BC)(A,B,C为整式,且B、C0)。2.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。3.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。5.根据分式的基本性质,异分母的分数可以通分,使几个分数的的分母相同;同样,根据分式的基本性质,分式也可以进行类似的变形,使几个异分母分式的分母相同,而分式的值不变。6.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分。7.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。同时各分式按照分母所扩大的倍数,相应扩大各自的分子。注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。注:(1)约分和通分的依据都是分式的基本性质(2)分式的约分和通分都是互逆运算过程。四则运算1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。用字母表示为:a/cb/c=(ab)/c。2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。用字母表示为:a/bc/d=(adcb)/bd。3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用字母表示为:a/b * c/d=ac/bd。4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。a/bc/d=ad/bc。(2).除以一个分式,等于乘以这个分式的倒数:a/bc/d=a/b*d/c。5.乘方法则:分子相乘做分子,分母相乘做分母,可以约分的约分,最后化成最简。分式方程分式方程分母中含有未知数的方程叫做分式方程。分式方程去分母方程两边同时乘以最简公分母(最简公分母:系数取最小公倍数出现的字母取最高次幂出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号;按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项, 系数化为1)求出未知数的值;验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根). 一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也要代进去检验。解题步骤列分式方程解应用题的一般步骤为:(1)设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;(2)列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论