




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题1解答1. 写出下列随机试验的样本空间:(1)记录一个班一次数学考试的平均分数(设以百分制记分);(2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果;(4)在单位圆内任意取一点,记录它的坐标.解:(1)以表示该班的学生人数,总成绩的可能取值为0,1,2,100,所以该试验的样本空间为.(2)设在生产第10件正品前共生产了件不合格品,样本空间为,或写成(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为.(3)取直角坐标系,则有,若取极坐标系,则有.2设、为三事件,用、及其运算关系表示下列事件.(1) 发生而与不发生; (2) 、中恰好发生一个; (3) 、中至少有一个发生; (4) 、中恰好有两个发生; (5) 、中至少有两个发生; (6) 、中有不多于一个事件发生.解:(1)或或;(2); (3)或;(4).(5)或; (6).3设样本空间,事件,具体写出下列事件:(1);(2);(3);(4).解:(1);(2);(3);(4).4. 一个样本空间有三个样本点, 其对应的概率分别为, 求的值.解:由于样本空间所有的样本点构成一个必然事件,所以解之得,又因为一个事件的概率总是大于0,所以.5. 已知=0.3,=0.5,=0.8,求(1);(2);(3). 解:(1)由得.(2) .(3) 6. 设=,且,求. 解:由=得,从而7. 设3个事件、,且,求. 解:8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为个.以表示事件“杯子中球的最大个数为”,则表示每个杯子最多放一个球,共有种方法,故表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为种,故表示3个球放入同一个杯子中,共有种放法,故9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少? 解:从0至9 中任取4个数进行排列共有10987种排法.其中有(4987487987)种能成4位偶数. 故所求概率为.10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以.(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 .(3)第一卷出现在旁边+P第五卷出现旁边-P第一卷及第五卷出现在旁边.(4)这里事件是(3)中事件的对立事件,所以 .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以.11. 把2,3,4,5诸数各写在一张小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率. 解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 .12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率. 解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为.事件“没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含个样本点,于是.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次, 求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在 记 “等待时间短于10分钟”为事件 则有于是14. 甲乙两人相约点在预定地点会面。先到的人等候另一人分钟后离去,求甲乙两人能会面的概率解:以分别表示甲、乙二人到达的时刻,那末 ,;若以表示平面上的点的坐标,则样本空间可以用这平面上的边长为4的一个正方形表示,二人能会面的充要条件是,即事件所以所求的概率为:15. 现有两种报警系统和,每种系统单独使用时,系统有效的概率,系统的有效概率为,在失灵的条件下,有效的概率为,求(1) 这两个系统至少有一个有效的概率;(2) 在失灵条件下,有效的概率. 解:设表示“系统有效”,表示“系统有效”,则由知.(1)(2)16. 已知事件发生的概率,发生的概率,以及条件概率=0.8,求和事件的概率. 解:由乘法公式得所以17. 一批零件共100个,其中次品有10个每次从中任取1个零件,取3次,取出后不放回求第3次才取得合格品的概率 解:设表示事件“第次取得合格品”,则18. 有两个袋子,每个袋子都装有只黑球,只白球,从第一个袋中任取一球放入第二个袋中,然后从第二个袋中取出一球,求取得黑球的概率是多少? 解:设从第一个袋子摸出黑球A,从第二个袋中摸出黑球为B,则,由全概公式知:.19. 一个机床有的时间加工零件,其余时间加工零件加工零件时,停机的概率是0.3,加工零件时,停机的概率时0.4,求这个机床停机的概率 解:设表示“机床停机”,表示“加工零件”,表示“加工零件”,则20. 10个考签中有4个难签,3个人参加抽签考试,不重复地抽取,每人一次,甲先,乙次,丙最后.证明3人抽到难签的概率相同.证明:设甲、乙、丙分别抽到难签的事件为,则,显然. 21. 两部机器制造大量的同一种机器零件,根据长期资料总结,甲、乙机器制造出的零件废品率分别是0.01和0.02现有同一机器制造的一批零件,估计这一批零件是乙机器制造的可能性比它们是甲机器制造的可能性大一倍,现从这批零件中任意抽取一件,经检查是废品试由此结果计算这批零件是由甲生产的概率解:设表示“零件由甲生产”,表示“零件是次品”,则由贝叶斯公式有22. 有朋友自远方来访,他乘火车、轮船、汽车、飞机来的概率分别是0.3、0.2、0.1、0.4如果他乘火车、轮船、汽车来的话,迟到的概率分别是、,而乘飞机则不会迟到结果他迟到了,试问他是乘火车来的概率是多少? 解: 用表示“朋友乘火车来”,表示“朋友乘轮船来”,表示“朋友乘汽车来”,表示“朋友乘飞机来”,表示“朋友迟到了”.则23. 加工一个产品要经过三道工序,第一、二、三道工序不出现废品的概率分别是0.9、0.95、0.8若假定各工序是否出废品相互独立,求经过三道工序而不出现废品的概率 解:设分别表示第一、二、三道工序不出现废品,则由独立性得24. 三个人独立地破译一个密码,他们能译出的概率分别是0.2、1/3、0.25求密码被破译的概率解:设分别表示第一、二、三个人破译出密码,则由独立性得25. 对同一目标,3名射手独立射击的命中率是0.4、0.5和0.7,求三人同时向目标各射一发子弹而没有一发中靶的概率? 解:设分别表示第一、二、三个射手击中目标,则由独立性得.26. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中,飞机必定被击落,求飞机被击落的概率. 解:设依次表示甲、乙、丙击中飞机,分别表示有人击中飞机,表示飞机被击落,则由全概率公式,得27. 证明:若三个事件、独立,则、及都与独立证明: (1)=. (2).(3)=.28. 15个乒乓球中有9个新球,6个旧球,第一次比赛取出了3个,用完了放回去,第二次比赛又取出3个,求第二次取出的3个球全是新球的概率解:设=第一次取出个新球,表示第二次取出3个新球,则. 29. 要验收一批100件的物品,从中随机地取出3件来测试,设3件物品的测试是相互独立的,如果3件中有一件不合格,就拒绝接收该批物品.设一件不合格的物品经测试查出的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公用品耗材购销合同
- 中医药内科学试题及答案
- 中医玄学考试题及答案
- 文化遗产数字化保护中的区块链技术应用与安全报告
- 2025年康复医疗服务体系与康复康复康复机构运营品牌危机管理报告
- 普法常识题库及答案
- 2024年大学生助学贷款知识竞赛题库及答案
- 成都汽车修理工初级考试题与答案
- 2025-2030中国热塑性聚烯烃(TPO)膜产业前景动态及需求趋势预测报告
- 2025-2030中国漂移克星行业运行状况及未来趋势预测报告
- 2025年中药调剂师试卷及答案
- 2025年时事政治考试题及参考答案(100题)
- 井工煤矿风险监测预警处置方案之安全监控系统监测预警处置方案
- 员工社保补贴合同协议
- 国际反洗钱师cams考试真题中文版题库汇总(含答案)
- 新生儿疾病诊疗规范诊疗指南诊疗常规2022版
- 达格列净课件
- 教学设计原理 加涅 完整笔记
- 谢祥德谈宽窄巷子的运营
- 雪铁龙世嘉用户使用手册
- 医院洁净空调系统运行管理维护保养手册
评论
0/150
提交评论