




免费预览已结束,剩余12页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省三明市清流一中2014-2015学年 高一上学期第三次段考数学试卷一、选择题:(每小题3分,共36分,每小题有且只有一个正确答案)1若集合p=x|2x4,q=x|x3,则pq等于()ax|3x4bx|3x4cx|2x3dx|2x32sin600的值是()abcd3函数的最小正周期是()abc2d54已知角终边上一点a的坐标为,则sin=()abcd5下列命题正确的是()a单位向量都相等b若与是共线向量,与是共线向量,则与是共线向量cd6设a=log2,b=log3,c=()0.3,则()aabcbacbcbcadbac7将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()ay=f(x)是奇函数by=f(x)的周期为cy=f(x)的图象关于直线x=对称dy=f(x)的图象关于点(,0)对称8函数y=acos(x+)在一个周期内的图象如下,此函数的解析式为()ay=2cos(2x+)by=2cos(2x)cy=2cos()dy=2cos(2x+)9半径为10cm,面积为100cm2的扇形中,弧所对的圆心角为()a2bcd1010将函数y=sin(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是()abcd11f(x)=是r上的单调递增函数,则实数a的取值范围为()a(1,+)b4,8)c(4,8)d(1,8)12如图为一半径为3m的水轮,水轮中心o距水面2m,已知水轮每分钟旋转4圈,水轮上的点p到水面距离y(m)与时间x(t)满足函数关系y=asin(x+)+2则()a=,a=5b=,a=5c=,a=3d=,a=3二、填空题:(每小题3分,共12分)13=14记符号f1(x)为函数f(x)的反函数,且f(3)=0,则f1(x+1)的图象必经过点15求函数取最大值时自变量的取值集合16对于函数f(x),若在定义域内存在实数x,使得f(x)=f(x),则称f(x)为“局部奇函数”若f(x)=2x+m是定义在区间1,1上的“局部奇函数”,则实数m的取值范围是三、解答题(共6个大题,总分52分)1718计算(1)已知tanx=2,求的值;(2)sin(2)cos(2)19已知集合a=xr|mx22x+1=0,在下列条件下分别求实数m的取值范围:()a=;()a恰有两个子集;()a(,2)20已知函数(1)写出它的振幅、周期、频率和初相;(2)在直角坐标系中,用“五点法”画出函数y=f(x)一个周期闭区间上的图象;(3)求函数f(x)的单调递增区间21已知函数f(x)=1,x(b3,2b)是奇函数(1)求a,b的值;(2)证明:f(x)是区间(b3,2b)上的减函数;(3)若f(m1)+f(2m+1)0,求实数m的取值范围22对于定义域为d的函数f(x),若同时满足下列条件:f(x)在d内有单调性;存在区间a,bd,使f(x)在区间a,b上的值域也为a,b,则称f(x)为d上的“和谐”函数,a,b为函数f(x)的“和谐”区间()求“和谐”函数y=x3符合条件的“和谐”区间;()判断函数是否为“和谐”函数?并说明理由()若函数是“和谐”函数,求实数m的取值范围福建省三明市清流一中2014-2015学年高一上学期第三次段考数学试卷一、选择题:(每小题3分,共36分,每小题有且只有一个正确答案)1若集合p=x|2x4,q=x|x3,则pq等于()ax|3x4bx|3x4cx|2x3dx|2x3考点:交集及其运算 专题:集合分析:由于两集合已是最简,直接求它们的交集即可选出正确答案解答:解:p=x|2x4,q=x|x3,pq=x|3x4故选a点评:本题考查交的运算,理解好交的定义是解答的关键2sin600的值是()abcd考点:运用诱导公式化简求值 专题:计算题分析:把原式的角度600变形为2360120,然后利用诱导公式化简,再把120变为18060,利用诱导公式及特殊角的三角函数值即可求出值解答:解:sin600=sin(2360120)=sin120=sin(18060)=sin60=故选d点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,同时注意角度的灵活变换3函数的最小正周期是()abc2d5考点:三角函数的周期性及其求法 分析:根据t=可得答案解答:解:t=5故选d点评:本题主要考查三角函数的最小正周期的求法属基础题4已知角终边上一点a的坐标为,则sin=()abcd考点:任意角的三角函数的定义 专题:三角函数的求值分析:由题意可得x=2,y=2,r=4,由 sin=,运算求得结果解答:解:由题意可得x=2,y=2,r=4,sin=,故选:c点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题5下列命题正确的是()a单位向量都相等b若与是共线向量,与是共线向量,则与是共线向量cd考点:向量的三角形法则;单位向量 专题:平面向量及应用分析:a单位向量的方向不一定相同,因此不一定相等;b取=,则与不一定是共线向量;c.0;d利用向量的三角形法则即可判断出解答:解:a单位向量的方向不一定相同,因此不一定相等,不正确;b虽然与是共线向量,与是共线向量,但是取=,则与不一定是共线向量,不正确;c.,因此不正确;d.=,正确故选:d点评:本题考查了单位向量、向量的三角形法则、共线向量,考查了推理能力,属于基础题6设a=log2,b=log3,c=()0.3,则()aabcbacbcbcadbac考点:对数值大小的比较 专题:函数的性质及应用分析:直接判断对数值的范围,利用对数函数的单调性比较即可解答:解:a=log20,b=log30,log2log2log2log3,c=()0.30bac故选:d点评:本题考查对数函数的单调性,对数值的大小比较,基本知识的考查7将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()ay=f(x)是奇函数by=f(x)的周期为cy=f(x)的图象关于直线x=对称dy=f(x)的图象关于点(,0)对称考点:函数y=asin(x+)的图象变换 专题:三角函数的图像与性质分析:利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f(x)=cosx,则可排除选项a,b,再由cos=cos()=0即可得到正确选项解答:解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx即f(x)=cosxf(x)是周期为2的偶函数,选项a,b错误;cos=cos()=0,y=f(x)的图象关于点(,0)、(,0)成中心对称故选:d点评:本题考查函数图象的平移,考查了余弦函数的性质,属基础题8函数y=acos(x+)在一个周期内的图象如下,此函数的解析式为()ay=2cos(2x+)by=2cos(2x)cy=2cos()dy=2cos(2x+)考点:由y=asin(x+)的部分图象确定其解析式 专题:三角函数的图像与性质分析:由图易知a=2,t=,可求得,再利用“五点作图法”,知2()+=0,可求得,从而可得此函数的解析式解答:解:由图知,a=2,=()=,所以t=,解得:=2由“五点作图法”知,2()+=0,解得:=,所以,此函数的解析式为:y=2cos(2x+),故选:a点评:本题考查由y=asin(x+)的部分图象确定其解析式,利用“五点作图法”确定的值是难点,考查转化思想9半径为10cm,面积为100cm2的扇形中,弧所对的圆心角为()a2bcd10考点:弧长公式 专题:三角函数的求值分析:利用弧长公式与扇形的面积计算公式即可得出解答:解:设弧所对的圆心角为则100=,解得=2故选:a点评:本题考查了弧长公式与扇形的面积计算公式,属于基础题10将函数y=sin(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是()abcd考点:函数y=asin(x+)的图象变换 专题:三角函数的图像与性质分析:根据三角函数的图象的平移法则,依据原函数横坐标伸长到原来的2倍可得到新的函数的解析式,进而通过左加右减的法则,依据图象向左平移个单位得到y=sin(x+),整理后答案可得解答:解:将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数y=sin(x),再将所得的图象向左平移个单位,得函数y=sin(x+),即y=sin(x),故选:c点评:本题主要考查了三角函数的图象的变换要特别注意图象平移的法则11f(x)=是r上的单调递增函数,则实数a的取值范围为()a(1,+)b4,8)c(4,8)d(1,8)考点:函数单调性的判断与证明 专题:计算题;压轴题分析:先根据当x1时,f(x)是一次函数且为增函数,可得一次项系数为正数,再根据当x1时,f(x)=ax为增函数,可得底数大于1,最后当x=1时,函数对应于一次函数的取值要小于指数函数的取值综合,可得实数a的取值范围解答:解:当x1时,f(x)=(4)x+2为增函数40a8又当x1时,f(x)=ax为增函数a1同时,当x=1时,函数对应于一次函数的取值要小于指数函数的取值(4)1+2a1=aa4综上所述,4a8故选b点评:本题以分段函数为例,考查了函数的单调性、基本初等函数等概念,属于基础题解题时,应该注意在间断点处函数值的大小比较12如图为一半径为3m的水轮,水轮中心o距水面2m,已知水轮每分钟旋转4圈,水轮上的点p到水面距离y(m)与时间x(t)满足函数关系y=asin(x+)+2则()a=,a=5b=,a=5c=,a=3d=,a=3考点:由y=asin(x+)的部分图象确定其解析式;已知三角函数模型的应用问题 专题:应用题分析:根据题意,水轮旋转一周所用的时间为一个周期,由周期公式,t=求解;a为最大振幅,由图象知到最高点时即为a值解答:解:已知水轮每分钟旋转4圈=又半径为3m,水轮中心o距水面2m,最高点为5,即a=3,故选d点评:本题主要通过一个实际背景来考查三角函数的周期及振幅二、填空题:(每小题3分,共12分)13=6考点:有理数指数幂的化简求值 专题:计算题;函数的性质及应用分析:利用指数式和对数式的运算性质和运算法则,把等价转化为41+3,由此能够求出结果解答:解:=41+3=6故答案为:6点评:本题考查指数式和对数式的运算性质和运算法则,是基础题解题时要认真审题,仔细解答14记符号f1(x)为函数f(x)的反函数,且f(3)=0,则f1(x+1)的图象必经过点(1,3)考点:反函数 专题:函数的性质及应用分析:f(3)=0,可得f1(0)=3,令x+1=0,解得x即可得出解答:解:f(3)=0,f1(0)=3,令x+1=0,解得x=1f1(x+1)的图象必经过点(1,3),故答案为:(1,3)点评:本题考查了互为反函数的性质,属于基础题15求函数取最大值时自变量的取值集合x|x=+4k,kz考点:正弦函数的图象 专题:三角函数的图像与性质分析:直接根据正弦函数的最值进行求解解答:解:函数,当sin()=1时,函数取得最大值1,此时=2k+,kz,x=+4k,kz,自变量的取值集合x|x=+4k,kz故答案为:x|x=+4k,kz点评:本题重点考查了正弦函数的单调性和最值,属于中档题16对于函数f(x),若在定义域内存在实数x,使得f(x)=f(x),则称f(x)为“局部奇函数”若f(x)=2x+m是定义在区间1,1上的“局部奇函数”,则实数m的取值范围是,1考点:抽象函数及其应用 专题:函数的性质及应用分析:利用局部奇函数的定义,建立方程关系,然后判断方程是否有解即可解答:解:根据局部奇函数的定义,f(x)=2x+m时,f(x)=f(x)可化为2x+2x+2m=0,因为f(x)的定义域为1,1,所以方程2x+2x+2m=0在1,1上有解,令t=2x,2,则2m=t+,设g(t)=t+,则g(t)=1=,当t(0,1)时,g(t)0,故g(t)在(0,1)上为减函数,当t(1,+)时,g(t)0,故g(t)在(1,+)上为增函数,所以t,2时,g(t)2,所以2m2,即m故答案为:点评:本题主要考查新定义的应用,利用新定义,建立方程关系,然后利用函数性质进行求解是解决本题的关键,考查学生的运算能力三、解答题(共6个大题,总分52分)17考点:向量在几何中的应用 专题:证明题分析:先利用向量的减法法则将向量表示成,再将条件代入化简即可证明出结论解答:证明:,点评:点评:本题考查向量在几何中的应用、两个向量的加减法的法则,以及其几何意义,实数与向量乘积公式的应用18计算(1)已知tanx=2,求的值;(2)sin(2)cos(2)考点:运用诱导公式化简求值;同角三角函数基本关系的运用 专题:三角函数的求值分析:由条件利用同角三角函数的基本关系、诱导公式求得所给式子的值解答:(1)解:(2)sin(2)cos(2)=sincos=sincos=sin2点评:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题19已知集合a=xr|mx22x+1=0,在下列条件下分别求实数m的取值范围:()a=;()a恰有两个子集;()a(,2)考点:集合关系中的参数取值问题;子集与真子集 专题:综合题分析:()若a=,则关于x的方程mx22x+1=0 没有实数解,则m0,由此能求出实数m的取值范围()若a恰有两个子集,则a为单元素集,所以关于x的方程mx22x+1=0 恰有一个实数解,分类讨论能求出实数m的取值范围()若a(,2),则关于x的方程mx2=2x1在区间(,2)内有解,这等价于当x(,2)时,求值域:m=1(1)2,由此能求出实数m的取值范围解答:解:()若a=,则关于x的方程mx22x+1=0 没有实数解,则m0,且=44m0,所以m1; ()若a恰有两个子集,则a为单元素集,所以关于x的方程mx22x+1=0 恰有一个实数解,讨论:当m=0时,x=,满足题意;当m0时,=44m,所以m=1综上所述,m的集合为0,1 ()若a(,2)则关于x的方程mx2=2x1在区间(,2)内有解,这等价于当x(,2)时,求值域:m=1(1)2m(0,1点评:本题考查实数m的取值范围的求法,解题时要认真审题,注意分析法、讨论法和等价转化法的合理运用20已知函数(1)写出它的振幅、周期、频率和初相;(2)在直角坐标系中,用“五点法”画出函数y=f(x)一个周期闭区间上的图象;(3)求函数f(x)的单调递增区间考点:正弦函数的图象;五点法作函数y=asin(x+)的图象 专题:三角函数的图像与性质分析:(1)直接结合所给函数的解析式进行求解即可;(2)直接根据“五点法”画图的步骤进行求解;(3)直接根据正弦函数的单调性进行求解解答:解:(1)函数,振幅为3,周期是4,初相是,(2)利用五点法,计算是你如下所示:当时,x=,y=0,当时,x=,y=3,当时,x=,y=0,当时,x=,y=3,当时,x=,y=0,函数在一个周期内的图象如下图所示:(3)令+2k+2k,kz,x,增区间为,kz,点评:本题重点考查了三角函数的图象与性质、三角函数中有关量之间的关系等炸死,属于基础题解题关键是灵活运用有关性质进行求解21已知函数f(x)=1,x(b3,2b)是奇函数(1)求a,b的值;(2)证明:f(x)是区间(b3,2b)上的减函数;(3)若f(m1)+f(2m+1)0,求实数m的取值范围考点:函数奇偶性的判断 专题:计算题;函数的性质及应用;不等式的解法及应用分析:(1)由于函数f(x)是奇函数,且f(0)有意义,则f(0)=0,定义域关于原点对称,列出方程,即可得到a,b;(2)运用单调性的定义,注意作差、变形,同时运用指数函数的单调性,即可判断符号,得到结论成立;(3)运用奇函数的定义和函数f(x)是区间(2,2)上的减函数,得到不等式组,注意定义域的运用,解出它们即可得到范围解答:(1)解:函数,x(b3,2b)是奇函数,且b3+2b=0,即a=2,b=1(2)证明:由( i)得,x(2,2),设任意 x1,x2(2,2)且x1x2,x1x2又,f(x1)f(x2)f(x)是区间(2,2)上的减函数(3)解:f(m1)+f(2m+1)0,f(m1)f(2m+1)f(x)奇函数f(m1)f(2m1)f(x)是区间(2,2)上的减函数即有1m0,则实数m的取值范围是(1,0)点评:本题考查函数的性质和运用,考查函数的奇偶性和单调性的定义和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年安徽省芜湖市保安员证考试题库及答案
- 公司团队户外活动策划方案模板
- 2025年中国浮油收集器市场现状分析及投资战略规划分析报告
- 2025年中国扩散曝气设备行业市场深度研究及发展趋势预测报告
- 五年级数学科组教学工作总结
- 铁路护路宣传课件
- 粉煤砖行业深度研究分析报告(2024-2030版)
- 2025年中国即热式电热水龙头行业发展全景监测及投资前景展望报告
- 2025年价值创造行业分析报告
- 中国工业蒸汽行业发展前景预测及投资方向研究报告
- 2025年人教版小学五年级下册奥林匹克数学竞赛试卷(附参考答案)
- 机械伤害培训课件
- 门诊护理培训内容
- 2025-2030中国煤炭机械行业发展分析及投资前景预测研究报告
- DB51-T 3171-2024 四川省体育服务综合体等级划分
- 宠物公司创业路演
- 2024年随州市属事业单位考试试卷
- 沪科版八年级物理第八章压强单元测试试题(含答案)
- DB42T413-2009 餐饮场所消防安全管理规范
- 范文酒店客房服务外包合同年
- 2025机器设备买卖合同模板
评论
0/150
提交评论