



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
简单的逻辑联结词、全称量词与存在性量词【考纲要求】1. 理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【知识网络】简易逻辑 逻辑联结词词简单命题与复合命题全称量词、存在量词 或、且、非【考点梳理】一、复合命题的真假非或且真真假真真真假假真假假真真真假假假真假假口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真。二、全称命题与特称命题1、全称量词:类似“所有”这样的量词,并用符号“”表示。2、全称命题:含有全称量词的命题。其结构一般为:3、存在量词:类似“有一个”或“有些”或“至少有一个”这样的量词,并用符号“”表示。4、特称命题:含有存在量词的命题。其结构一般为:三、全称命题与特称命题的否定1、命题的否定和命题的否命题的区别命题的否定 ,即,指对命题的结论的否定。命题的否命题,指的是对命题的条件和结论的同时否定。2、全称命题的否定全称命题: 全称命题的否定():特称命题 特称命题的否定所以全称命题的否定是特称命题,特称命题的否定是全称命题。四、常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有()个小于不小于至多有个至少有()个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或【典型例题】类型一:判定复合命题的真假【高清课堂:逻辑 例2】例1. 分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假(1)若q1,则方程x22xq0有实根;(2)若ab0,则a0或b0;(3)若实数x、y满足x2y20,则x、y全为零 解析: (1)逆命题:若关于x的方程x22xq0有实根,则q1,为假命题否命题:若q1,则关于x的方程x22xq0无实根,假命题逆否命题:若关于x的方程x22xq0无实根,则q1,真命题(2)逆命题:若a0或b0,则ab0,真命题否命题:若ab0,则a0且b0,真命题逆否命题:若a0且b0,则ab0,真命题(3)逆命题:若x、y全为零,则x2y20,真命题否命题:若实数x、y满足x2y20,则x、y不全为零,真命题逆否命题:若实数x、y不全为零,则x2y20,真命题点评: 1. 判断复合命题的真假的步骤:确定复合命题的构成形式;判断其中简单命题p和q的真假;根据规定(或真假表)判断复合命题的真假.2. 条件“或”是“或”的关系,否定时要注意.举一反三:【变式1】若命题P:,则命题“非P”是( )A且 B或 C D 【答案】A ;解析:因为命题可陈述为:属于集合A或属于集合B,非:即不属于集合A且也不属于集合B,即非:且,故选A.【变式2】满足“p或q”为真,“非p”为真的是 (填序号)(1)p:在ABC中,若cos2Acos2B,则AB;q: sinx在第一象限是增函数(2)p:;q: 不等式的解集为(3)p:圆的面积被直线平分;q:椭圆的一条准线方程是.【答案】(2); 解析:由已知条件,知命题p假、命题q真. 选项(1)中,命题p真而命题q假,排除;选项(2)中命题p假、命题q真;选项(3)中,命题p和命题q都为真,排除;故填(2)类型二:全称命题与特称命题真假的判断例2. 判断下列命题的真假,写出它们的否定并判断真假.(1); (2);(3); (4).解析:(1)由于都有,故,为真命题;:,为假命题(2) 因为不存在一个实数,使成立,为假命题;:,为真命题.(3)因为只有或满足方程,为假命题;:,为真命题.(4) 由于使成立的数有,且它们是有理数,为真命题;:,为假命题.点评:1. 要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素,验证成立;要判断全称命题是假命题,只要能举出集合M中的一个,使不成立即可;2.要判断一个特称命题的真假,依据:只要在限定集合M中,至少能找到一个,使成立,则这个特称命题就是真命题,否则就是假命题.举一反三:【高清课堂:逻辑 思考题2】【变式1】分别写出下列各命题的逆命题,否命题,逆否命题,并判断它们的真假(1)若ab且cd,则acbd(2)若abd,则ab且cd(假命题)否命题:若ab或cd,则acbd(假命题)逆否命题:若acbd,则ab或cd(真命题)(2)逆命题:若方程ax22x10至少有一个负数根,则a0否命题:若a0,则方程ax22x10无负实数根逆否命题:若方程ax22x10无负实数根,则a0因为若a0时,方程ax22x10为两根之积为0此时a0,所以逆命题不成立因此否命题也是假命题.类型三:在证明题中的应用例3.若均为实数,且,求证:中至少有一个大于0 解析:假设都不大于0,即,则而,这与相矛盾因此中至少有一个大于0点评: 1.利用反证法证明时,首先正确地作出反设(否定结论).从这个假设出发,经过推理论证,得出矛盾,从而假设不正确,原命题成立,反证法一般适宜结论本身以否定形式出现,或以“至多”、“至少”形式出现,或关于唯一性、存在性问题,或者结论的反面是比原命题更具体更容易研究的命题.2.反证法时对结论进行的否定要正确,注意区别命题的否定与否命题举一反三:【变式】求证:关于的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业污水集中处理工程PPP项目特许经营合同协议书范本
- 2024年河南医药大学财务招聘真题
- 2025年绿色金融债券市场发行与绿色金融投资趋势分析报告
- 2025年工业互联网平台区块链智能合约安全风险评估与预警系统研究报告
- 中医预防保健试题及答案
- 中医药膳面试题及答案解析
- 2025年银发消费市场养老服务市场细分群体需求研究报告
- 2025年6月三级健康管理师考试《理论知识》真题试卷及答案
- 品德考试题目及答案高一
- 八大危险作业安全培训考试试题及答案
- 初中道德与法治教师培训
- 数的开方、整式的乘除数学能力试题
- DB53∕T 1269-2024 改性磷石膏用于矿山废弃地生态修复回填技术规范
- 2024年安陆中小学教师招聘真题
- 卫生法规-卫生法律法规概论-基本医疗卫生与健康促进法律制度
- 2024年海南省财金集团有限公司招聘笔试冲刺题(带答案解析)
- 架线导地线各种弧垂的含义及计算方法(附计算表格)彻底弄懂弧垂
- 网络营销:推广与策划(第3版 慕课版)课件 项目一认知网络营销(知识基石)
- 精益管理课件
- 建筑防火基础知识
- 首诊负责制度检查分析报告
评论
0/150
提交评论