



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
应力张量的认识(三)本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到后来逐渐认识的过程。相关还有:Levy-Mises理论的思考前面两部分分别介绍了应力张量的基础和对齐本质的思考,最终得出了应力张量的本质是一个线性变换的结论。这一部分是对上述结论的验证计算和关于严谨性方面的补充证明。前面两部分参考链接应力张量的认识(一)应力张量的认识(二)验证计算为了加深对应力张量是线性变换的矩阵的理解,进行如下计算:从线性变换的角度求出变换矩阵(即应力张量),并验证其相似性。为了计算方便又不失一般性,取如下图所示的计算条件:S1、S2为全局绝对坐标系下的两个局部坐标系(他们由截取P的两两相互垂直的平面的法向决定),S1和全局坐标系重合,S2为全局坐标系绕z轴逆时针旋转90得到。P点应力状态在S1、S2系下,分别可以用一个应力张量表示,并且是相似的。接下来就从线性变换角度计算说明。S1、S2的基及过渡矩阵根据局部坐标轴在全局坐标系下的方向余弦容易得到他们的基分别为:基到基的过渡矩阵W满足=W同理基到基的过渡矩阵W-1满足=W-1解出线性变换在基下的矩阵设全局坐标系描述下,应力张量表示为设T表示应力张量对应的线性变换,T(1)表示1截面上的应力,显然T(1)=(11,12,13)TT(1)表示S2坐标系下1截面上的应力,对应的是全局坐标系下y截面的应力,即T(1)=(21,22,23)T于是可得到根据T()=A,T()=B,得到线性变换在两个基下的矩阵分别为也就是P点在S1、S2坐标系下的应力张量(由于表示上的缘故,这里为转置关系)。相似关系验证可知W-1AW=B,即AB至此,可以清晰看出不同坐标系下应力张量与不同基下线性变换矩阵的等价关系。线性空间的证明再进一步,关于线性变换的理解都是基于ijnij=pi的形式而推出的,似乎还不够严谨。比如,没有证明截面位置、截面应力可以做成一个线性空间,也没有证明从截面位置到截面应力的变换是线性变换。本着彻底打通这条路的心思,下面开始对这两个问题进行分析。线性空间的定义设V是一个非空集合,R为实数域。如果对于V中任意两个元素,V中总有唯一的一个元素与之对应,称为a与b的和,记作= +;又对于R中任一数与V中任一元素,V中总有唯一的一个元素与之对应,称为与的积,记作=。并且这两种运算满足以下八条运算规律(设,为V重元素,为R重元素):(i)+=+;(ii)(+)+=+(+);(iii)在V中存在零元素0,对任何,都有+0=;(iv)对任何,都有的负元素,使+=0;(v)1=;(vi)()=();(vii)(+)=+;(viii)(+)=+.那么,V就称为(实数域R上的)线性空间(或向量空间)。线性空间的证明截面应力空间显然是一个线性空间,因为它是一个一般的三维向量空间。对于截面位置空间,需要证明其对于某种定义的加法和乘法运算封闭,且满足上述运算律。截面位置空间是由方向余弦描述的,=(n1,n2,n3)=(cos,cos,cos)=(m1,m2,m3)=(cos,cos,cos)表示截面法线与坐标轴x的夹角,其他以此类推。n1,n2,n3取值范围为-1,1,且满足平方和为1。显然常规的加法和数乘运算不满足封闭条件。考虑到截面空间的描述特点,采用球坐标系下角度的常规加法和数乘运算来定义。球坐标系下,=(n1,n2,n3)=(sin1cos1,sin1sin1,cos1)=(m1,m2,m3)=(sin2cos2,sin2sin2,cos2)定义加法和数乘运算+=(sin(1+2)cos(1+2),sin(1+2)sin(1+2),cos(1+2)=(sin1cos1,sin1sin1,cos1)在这种加法和数乘运算定义下,首先显然对元素是封闭的,其次简单验证就可知对加法两个运算律、数乘的三个运算律也是满足的。零元素:取=0可得零元素(0,0,1)负元素:取=(-sin1cos1,-sin1sin1,cos1),可得+=(0,0,1)单位1:显然1即为单位元素综上可知,截面位置对于如上定义的运算可以作为一个线性空间。线性变换的证明线性变换的证明只需证明变换满足线性运算,对于此变换:T(n)=n满足T(+)=(+)=+=T()+T()T()=()=T()总结这一部分是对第二部分的验证说明和严谨性证明,主要是线性空间与线性变换的内容,由此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年秋新北师大版数学一年级上册课件 第一单元 生活中的数 第2课时 走进美丽乡村
- 水闸防洪防汛安全知识培训
- 通风系统安装与调试方案
- 水画课件观看体验
- 用户体验设计55课件
- 二零二五年度地下工程照明设备采购合同范本
- 2025版附还款来源保证的流动资金借款合同
- 二零二五年度电子商务平台建设合同补充协议
- 2025版绿色生态住宅区包干制物业服务协议
- 二零二五年度城市物流配送服务与效率提升合同
- QC新老七大工具培训课件
- SX-22163-QR345工装维护保养记录
- JJF 2025-2023高动态精密离心机校准规范
- 2023年航空职业技能鉴定考试-候机楼服务技能考试题库(含答案)
- 医院腹腔镜手术知情同意书
- p型半导体和n型半导体课件
- GB/T 748-2005抗硫酸盐硅酸盐水泥
- 走好群众路线-做好群众工作(黄相怀)课件
- 混凝土结构设计原理教学教案
- 民间文学(全套课件)
- 专升本00465心理卫生与心理辅导历年试题题库(考试必备)
评论
0/150
提交评论