图形学参考资料.doc_第1页
图形学参考资料.doc_第2页
图形学参考资料.doc_第3页
图形学参考资料.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

虚拟现实(Virtual Reality,简称VR;又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三度空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物。VR是一项综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者通过适当装置,自然地对虚拟世界进行体验和交互作用。使用者进行位置移动时,电脑可以立即进行复杂的运算,将精确的3D世界影像传回产生临场感。该技术集成了计算机图形(CG)技术、计算机仿真技术、人工智能、传感技术、显示技术、网络并行处理等技术的最新发展成果,是一种由计算机技术辅助生成的高技术模拟系统。概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于世界上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。而“虚拟”是指用计算机生成的意思。因此,虚拟现实是指用计算机生成的一种特殊环境,人可以通过使用各种特殊装置将自己“投射”到这个环境中,并操作、控制环境,实现特殊的目的,即人是这种环境的主宰。液晶是一种规则性排列的有机化合物,它是一种介于固体和液体之间的物质,目前一般采用的是分子排列最适合用于制造液晶显示器的nematic细柱型液晶。液晶本身并不能构发光,它主要是通过因为电压的更改产生电场而使液晶分子排列产生变化来显示图像。 液晶面板主要是由两块无钠玻璃夹着一个由偏光板、液晶层和彩色虑光片构成的夹层所组成。偏光板、彩色滤光片决定了有多少光可以通过以及生成何种颜色的光线。液晶被灌在两个制作精良的平面之间构成液晶层,这两个平面上列有许多沟槽,单独平面上的沟槽都是平行的,但是这两个平行的平面上的沟槽却是互相垂直的。简单的说就是后面的平面上的沟槽是纵向排列的话,那么前面的平面就是横向排列的。位于两个平面间液晶分子的排列会形成一个Z轴向90度的逐渐扭曲状态。背光光源即灯管发出的光线通过液晶显示屏背面的背光板和反光膜,产生均匀的背光光线,这些光线通过后层会被液晶进行Z轴向的扭曲,从而能够通过前层平面。如果给液晶层加电压将会产生一个电场,液晶分子就会重新排列,光线无法扭转从而不能通过前层平面,以此来阻断光线。 液晶显示器的缺点在于亮度、画面均匀度、可视角度和反应时间上与CRT显示器有比较明显的差距。其中反应时间和可视角度均取决于液晶面板的质量,画面均匀度和辅助光学模块有很大关系。而液晶显示器的亮度主要取决于背光光源。当然,整个模组的设计也是影响产品亮度的一个因素。 不少人在描述亮度单位时,都采用了“流明”,但这事实上是错误的。事实上,“流明”是光通量的单位,而亮度的单位应该是cd/m2(上标)。两者都是用于光学领域的技术参数。发光体单位时间内发出的光量总和称为光通量(luminous flux),物理学上用符号。发光体在特定方向单位立体角单位面积内的光通量称为亮度(luminace),物理学上用L表示,单位为坎德拉每平方米或称平方烛光cd/。亮度是衡量显示器发光强度的重要指标,对于液晶显示器来说,尤为重要。高亮度也就意味着显示器对于其工作的周围环境的抗干扰能力更高,主要针对液晶显示器的TCO03认证标准也作出了相当高的要求。厂商也不约而同地以高亮度来作为各自产品的卖点之一。一般来说,生产商主要通过增加灯管数量和优化显示屏的内部设计来提高液晶显示器的亮度。 由此,我们可以看到LCD的性能和面板原料有相当大的关系,面板的质量将直接决定LCD显示器的性能表现。市面上,12ms、16ms、25ms等LCD显示器所采用的面板是不一样的。但是,好的面板也就意味着更高的价格,夏普、三星、LG等厂商手中的高质量面板,价格也相当高。台湾厂商也有友达等知名厂商,他们的产品性价比较高,市面上不少显示器均采用他们的产品。纯净界EZX15F2就是其中一款。它的亮度为亮度 400cd/,对比度达到了550:1;而一般的同类产品只有250cd/的亮度和300:1的对比度。而且其相应时间仅为16ms,完全能胜任各类应用。其可视角度更是达到了水平163度/垂直135度,也超出同价格的其他品牌LCD显示器。出色的面板原料,不凡的技术参数,高质的性能表现,你还等什么呢?真实感计算机图形学(一)-自然景物模拟在计算机的图形设备上实现真实感图形必须完成的四个基本任务。1. 三维场景的描述。三维造型。2. 将三维几何描述转换成为二维透视图。透视变换。3. 确定场景中的所有可见面。消隐算法,可见面探测算法。4. 计算场景中可见面的颜色。根据基于光学物理的光照模型计算可见面投射到观察者眼中的光亮度大小和色彩组成。 其中三维造型技术根据造型对象分成三类:曲面造型:研究在计算机内如何描述一张曲面,如何对它的形状进行交互式的显示和控制。曲面造型又分成规则曲面造型(如平面、圆柱面等)和不规则曲面两种。不规则曲面造型方法主要有Bezier曲线曲面、B样条曲线曲面和孔斯曲面等。立体造型。研究如何在计算机内定义、表示一个三维物体。这些方法主要有体素构造法、边界表示法、八叉树法等等。曲面造型和立体造型合称为几何模型造型。自然景物模拟。研究如何在计算机内模拟自然景物,如云、水流、树等等。本文将主要集中介绍有关自然景物模拟的有关方法。寻求能准确地描述客观世界中各种现象与景观的数学模型,并逼真地再现这些现象与景观,是图形学的一个重要研究课题。很多自然景物难以用几何模型描述,如烟雾、植物、水波、火焰等。本文所讨论的几种建模及绘制技术都超越了几何模型的限制,能够用简单的模型描述复杂的自然景物。1.1 分形与IFS1.1.1 分形几何图1 雪花(snowflake)曲线分形(fractal)指的是数学上的一类几何形体,在任意尺度上都具有复杂并且精细的结构。一般来说分形几何体都是自相似的,即图形的每一个局部都可以被看作是整体图形的一个缩小的复本。例如,雪花曲线是一种典型的分形图形,生成方法如下:取一等边三角形,在每一边中间的三分之一处分别生长出一个小的等边三角形,重复上述过程就可以形成图2.1所示的曲线。理论上来说,无限递归的结果是形成了一个有限的区域,而该区域的周长却是无限的,并且具有无限数量的顶点。这样的曲线在数学上是不可微的。早在19世纪就已经出现了一些据有自相似特性的分形图形,但最初只是被看作一种奇异现象。本世纪70年代,Benoit B. Mandelbrot最早对分形进行系统研究,并创立了分形几何这一新的数学分支。Mandelbrot扩展了经典欧几里得几何中的维数,提出了分数维的概念。例如上述雪花曲线的维数为1.2618。分形几何并不只是抽象的数学理论。例如海岸线的轮廓,如果考虑其不规则性,同样具有无限的长度。Mandelbrot认为海岸、山脉、云彩和其他很多自然现象都具有分形的特性。因此,分形几何已经成为一个发展十分迅速的科学分支,尤其是在计算机图形学中,成为描述自然景物及计算机艺术创作的一种重要手段。此外,分形在图象压缩方面也有广阔的应用前景。1.1.2 仿射变换与迭代函数迭代函数系统IFS (Iteration Function System)最早是由Hutchinson于1981年提出的,现已成为分形几何中的重要研究内容之一。IFS是以仿射变换为框架,根据几何对象的整体与局部具有自相似结构,经过迭代而产生的。仿射变换是对图形所作的绕原点旋转、比例放大及平移等操作。定义二维欧氏空间中的仿射变换为:R2R2,(x,y)为二维空间中的一点,其仿射变换映象为(x,y),则仿射变换公式可写为:仿射变换可以使图形产生一个复本,分形图形的每个部分都可看作是在不同仿射变换下的复制品。这种分解与尺度无关,即原图经仿射变换后仍然可以对局部图形进行类似的分解。这种整体与局部相似的性质是分形的基本特征。一个迭代函数系统是由一组分别具有压缩因子S1,S2, ,Sn的有限个压缩映射集1,2, ,n组成,记为n,n=1, 2, , N,其中N为整体所分局部的个数;整体的压缩映射集n对应的压缩因子Sn,有S = max Sn,n=1, 2, , N满足0S1。对应于每一个n有一个伴随概率0Pn1,且Pn=1。压缩映射集n和对应的伴随概率Pn确定了IFS码。由分形空间的压缩映射定理可知,对于给定图形的IFS码,利用随机迭代,可以绘出图形的吸引子,也就是说如果以IFS码来建模,用极少量的代码就可以绘制出非常复杂的图形效果。这个过程的逆过程也是很有意义的,从一个图形出发获得IFS码,就相当于对原始图形作了高度的压缩,因而同样也是目前分形分形研究的热点课题。1.1.3 基于分形的景物生成由IFS码绘出的分形图形具有无穷细微的自相似结构,能对很多客观事物作出准确的反映,这种结构是难于用经典数学模型来描述的。只要变换选取适当,利用IFS就可以迭代地生成任意精度的图形效果,这也是其他绘制方法难以做到的。1.2 基于文法的模型美国科学家Aristid Lindenmayer于1969年提出了一种研究植物形态与生长的描述方法,以他的名字命名为L系统(L-grammars)。1984年,A. R. Smith将L系统应用于计算机图形学中。L系统实际上是一组形式语言,由特定的语法加以描述,这些语法由一系列产生式组成,所有产生式都是直接匹配的。例如,一种典型的L系统语法包括四个字母A,B,和两条产生式规则:1. AAA2. BABAAB从字母A出发,可以迭代地生成A、AA、AAAA等字母序列;从字母B出发,前几步迭代结果如下:BABAABAAABAABAAAAABAAB如果我们把由这种语法规则中的产生式迭代形成的词汇看作是某种图结构的一部分,把方括号中的内容视为前一个符号的分支,则上述文法的三次迭代结果如图2.2所示。在此基础上,适当改变分支的方向,加入随机动因素及在分支的终点绘制出叶子、花、果实等细节,就可以逼地真模拟出现实世界中各种形态的植物。当然,上述L系统本身并没有记录任何几何信息,因此基于L系统的建模语言必须能够同时支持文法描述和几何描述;如何对L系统的生长(迭代)过程加以控制也是一个需要进行研究的问题。对此,Reffye、Prusinkiewicz等人分别提出了各自的方法。总之,基于文法的L系统用于植物生长过程的模拟是非常成功的,为计算机真实感图形的绘制提供了又一个有力的工具。此外,这种思想也被成功地应用到了电子线路设计和建筑设计等很多方面。1.3 粒子系统Reeves于1983年提出的粒子系统方法是一种很有影响的模拟不规则物体的方法,能够成功地模拟由不规则模糊物体组成的景物。与其他传统图形学方法完全不同,这种方法充分体现了不规则模糊物体的动态性和随机性,从而能够很好地模拟火、云、水、森林和原野等许多自然景象。粒子系统的基本思想是采用许多形状简单的微小粒子作为基本元素来表示不规则模糊物体。这些粒子都有各自的生命周期,在系统中都要经历产生、运动和生长及消亡三个阶段。粒子系统是一个有生命的系统,因此不象传统方法那样只能生成瞬时静态的景物画面,而可产生一系列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论