




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间解析几何 简 介 课程号: 06110210 课程名称:空间解析几何 英文名称:Analytic Geometry周学时: 2-1 学分:2.5预修要求:内容简介: 解析几何学是几何学的一个分支,是一门阐述用代数方法(坐标法和向量运算)研究空间几何问题的课程。本课程介绍空间向量代数、平面与直线、二次曲面、正交变换与仿射变换等,使学生掌握必要的几何直观方面分析和洞察问题的能力。选用教材或参考书: 教材: 吕林根 许子道等编解析几何(高教版)参考书: 苏步青等编空间解析几何(上海科技出版社)丘维声编解析几何(北大版) 孟道骥著高等数学与解析几何(上下)(科学版)解析几何教学大纲一、课程的教学目的和基本要求解析几何学是几何学的一个分支,在高等数学的发展史上占有重要地位,是沟通几何形式与数量关系的一座桥梁,在代数,分析等各个数学分支和力学,物理等许多科学技术领域及某些社会科学领域中有着广泛的应用。解析几何课程是大学数学系的主要基础课程之一, 这门课程的学习质量对其它专业课程的学习和今后的工作有重要的影响,并且它本身的内容对于解决一些实际问题也是有用的。解析几何是一门阐述用代数方法(坐标法和向量运算)研究几何问题的课程,因此要能较好的解决有关的问题,一方面要注意培养从几何直观方面分析和洞察问题的能力,另一方面要注意掌握必要的代数方法和计算技巧,能准确地进行计算。此外,本课程以空间解析几何为主,并阐述了两种不同性质的几何-欧氏几何和仿射几何,这是与中学解析几何的主要区别。二、相关教学环节安排1. 每周布置作业, 周作业量23小时。2. 每章结束,安排一次习题课,12学时。三、课程主要内容及学时分配(打号为重点讲授部分,打*为选用部分)每周3学时(共16周),或每周6学时(共8周),共48学时。主要内容:(一) 矢量与坐标(共计12学时)1. 向量及其线性运算2. 仿射坐标系与直角坐标系3. 向量的内积4. 向量的外积5. 向量的混合积6. 习题课(二) 平面与直线(12学时)1. 曲面的方程和空间曲线的方程2. 平面的方程3. 平面与点的相关位置4. 两平面的相关位置5. 空间直线的方程6. 直线与平面的相关位置7. 空间两直线的相关位置8. 直线与点的相关位置9. 平面束10. 习题课 (三) 曲面与曲线(12学时)1 图形与方程(图形与方程,柱面,锥面)2 坐标变换(坐标变换,欧拉角*)3 二次曲面(作图,二次曲面的公共性质,不变量*)4 参数方程(曲线的参数方程,曲面的参数方程,球面坐标与柱面坐标)5 直纹面6 曲面的相交(相交图,区域的表示)7 习题课(四) 正交变换与仿射变换(12学时)1 映射(定义及例子,逆映射与映射乘法)2 平面上的正交变换(定义,性质,坐标表示)3 平面的仿射变换(定义及例,仿射变换的性质,仿射坐标系与仿射变换的坐标表示,仿射变换的分解)4 变换群与几何学5 空间的正交变换6 空间的仿射变换(定义及例,仿射变换的性质)7 习题课四、教材及主要参考书教材: 吕林根 许子道等编解析几何(高教版)参考书: 苏步青等编空间解析几何(上海科技出版社)丘维声编解析几何(北大版) 孟道骥著高等数学与解析几何(上下)(科学版)五、有关说明微分几何教学大纲一、教学目的微分几何课程是面向数学系学生开设的几何类课程之一,总学时数64,一个学期完成,学分4.通过本课程的教学,要使学生掌握微分几何中的基本概念、基本理论、基本方法和比较熟练利用向量分析中的运算技能;并使学生具有较强的几何直观及图形想象的能力,培养学生从具体到抽象的能力;培养学生具有较强的抽象思维、逻辑推理能力以及综合运用所学知识进行分析、解决问题的能力. 通过对曲面基本公式的推导,曲面的基本方程的推导的学习,使学生初步接触到近代几何思想、方法、符号的表示活动标架法 二、教学内容与要求1三维欧氏空间的曲线论(18课时) 教学内容(1) 曲线、正则曲线及其弧长的概念,曲线方程的表示(弧长参数表示和一般参数表示),曲线的曲率与挠率的概念及其计算公式,曲线的切线、主法线、从法线及法平面、从切面、密切面的概念及其方程的表示,曲线论的基本公式(Frenet 公式),曲线在一点邻近的性质,曲线论的基本定理,特殊曲线(平面曲线,球面曲线,贝特朗曲线,渐伸线,渐缩线).(2) 闭曲线的概念,切线的旋转指标定理,*凸曲线,*等周不等式,*四顶点定理,*Cauchy-Crofton 公式.基本要求: (1) 理解曲线、正则曲线及其弧长的概念,会用弧长参数表示曲线的方程,理解曲率与挠率的概念及其几何意义,熟练掌握曲率与挠率的计算公式(两种参数下的公式)并会用此公式来计算曲线的曲率与挠率.(2) 理解曲线的切线、主法线、从法线及法平面、从切面、密切面的概念并会求这三线、三面的方程.(3) 熟练掌握曲线论的基本公式并能运用此公式证明一些几何问题.(4) 理解曲线论基本定理的内容,了解其证明思想,并能运用该定理来确定一些特殊曲线的方程.(5) 掌握平面曲线、球面曲线的几何特征及其判断条件,了解贝特朗曲线、渐伸线渐缩线的概念及几何特征.(6) 了解闭曲线的概念,了解切线的旋转指标定理,知道等周不等式,四顶点定理,Cauchy-Crofton 公式.2三维欧氏空间中曲面的局部几何性质(46课时)教学内容:(1)曲面与正则曲面的概念,曲面的表示,曲面的切平面与法向量,参数变换,单参数曲面族、平面族的包络面,可展曲面的概念及其判断条件.(2)曲面的第一、第二基本形式,正交参数曲线网,等距对应,共形对应,曲面上的活动标架,曲面的基本公式,Weingarten 变换.(3)曲面的共轭方向,渐进方向,渐进曲线,曲面上曲线的法曲率,Meusnier定理,Euler公式,曲面的主方向,主曲率,曲率线,Dupin标线,总曲率,平均曲率,曲率线网,曲面在一点邻近处的形状,高斯映照,第三基本形式,特殊曲面(全脐点曲面,总曲率等于零的曲面,极小曲面).(4)曲面的基本方程,曲面论的基本定理.(5)测地曲率与测地线(6)曲面上向量的平行移动基本要求:(1). 理解曲面、正则曲面及坐标曲线的概念,理解曲面的切向量与法向量的概念及其几何意义,会求切平面与法线的方程,理解曲面的参数变换的概念,掌握一些常用曲面(如柱面,锥面,旋转面,螺旋面,切线面,直纹面)的形成过程及其方程、几何图形和坐标曲线的确定方法,理解曲面族、平面族的包络面的概念并会求包络面的方程,理解可展曲面的概念并会用其判断条件来判断曲面是否为可展曲面,掌握可展曲面的分类.(2). 会计算曲面的第一基本形式,第二基本形式,熟练掌握第一基本形式在几何上的运用(如求曲线的弧长,曲面上两曲线间的夹角,曲面上区域的面积),了解曲面上正交参数网的存在性,理解等距对应、共形对应的概念.(3). 掌握曲面上的活动标架的概念,熟练掌握曲面的基本公式(Gauss-公式,Weingarton-公式)及其运用,深刻理解Weingarton 变换的概念及其几何意义并掌握它与第二基本形式间的关系.(4). 深刻理解曲面的各方向(共轭方向,渐进方向,主方向)的概念及其几何意义,会确定各方向的代数方程,深刻理解曲面上的各种曲线(渐进曲线,曲率线)的概念,掌握它们的几何特征并会求出它们的微分方程,理解曲面上的各种曲率(法曲率,主曲率,总曲率,平均曲率)的概念并会计算各种曲率,理解法曲率的几何意义,熟练掌握法曲率的Euler公式及其运用.(5). 了解曲面在一点邻近的形状,理解高斯映照的概念及其表示,掌握第一、第二、第三基本形式间的关系及其运用,知道总曲率的几何意义,掌握特殊曲面几何刻画,深刻理解曲面的基本方程及基本定理的内容,掌握高斯定理的意义及其运用,了解基本定理的证明思想.(6)测地曲率向量,测地曲率,计算测地曲率的Liouville公式,测地线,法坐标,测地极坐标,测地坐标系,测地绕率,Gauss-Bonnet公式。(7)向量沿曲面上曲线的平行移动,绝对微分及其性质,自平行曲线,向量绕
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 日本休战协议书
- 足浴按摩店劳务合同协议
- 转让劳动合同协议书范本
- 邻居装修协商合同协议
- 农业生产技术服务及农资采购协议
- 车辆租赁协议书范本
- 煤场租凭协议书
- 车辆油漆外协合同协议
- 路边商铺转让协议书模板
- 专项资金借款协议集锦
- 电力工程造价咨询服务协议
- 一年级下册《读读童谣和儿歌》试题及答案共10套
- 文化传承之旅:中国音乐与中国故事智慧树知到期末考试答案章节答案2024年哈尔滨师范大学
- 第17课 第二次世界大战与战后国际秩序的形成 教学设计 高中历史统编版(2019)必修中外历史纲要下册
- MOOC 营养与健康-南京大学 中国大学慕课答案
- MOOC 食品毒理学-北京林业大学 中国大学慕课答案
- 特种设备“日管控、周排查、月调度”表格
- 统编语文九年级下册第二单元大单元教学设计
- 汇川技术在线测评题库
- 政务信息资源基础库建设技术方案
- 儿童肥胖问题的预防与干预
评论
0/150
提交评论