stata回归结果详解ppt课件.pptx_第1页
stata回归结果详解ppt课件.pptx_第2页
stata回归结果详解ppt课件.pptx_第3页
stata回归结果详解ppt课件.pptx_第4页
stata回归结果详解ppt课件.pptx_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 stata回归结果详解 2 数据来源于贾俊平 统计学 第7版 第12章多元线性回归 3 4 第二列SS对应的是误差平方和 或称变差 1 第一行为回归平方和或回归变差SSR 表示因变量的预测值对其平均值的总偏差 2 第二行为剩余平方和 也称残差平方和或剩余变差 SSE 是因变量对其预测值的总偏差 这个数值越大 拟合效果越差 y的标准误差即由SSE给出 3 第三行为总平方和或总变差SST 表示因变量对其平均值的总偏差 4 容易验证249 37 63 28 312 65 第三列df是自由度 degreeoffreedom 第一行是回归自由度dfr 等于变量数目 即dfr m 第二行为残差自由度dfe 等于样本数目减去变量数目再减1 即有dfe n m 1 第三行为总自由度dft 等于样本数目减1 即有dft n 1 对于本例 m 4 n 10 因此 dfr 4 dfe n m 1 20 dft n 1 24 第四列MS是均方差 误差平方和除以相应的自由度1 第一行为回归均方差MSR2 第二行为剩余均方差MSE 数值越小拟合效果越好 1 方差分析 5 F值 用于线性关系的判定 结合P值对线性关系的显著性进行判断 即弃真概率 所谓 弃真概率 即模型为假的概率 显然1 P便是模型 为真的概率 P值越小越好 对于本例 P 0 0000 0 0001 故置信度达到99 99 以上 R Squared为判定系数 determinationcoefficient 或称拟合优度 goodnessoffit 它是相关系数的平方 也是SSR SST y的总偏差中自变量解释的部分 Adjusted对应的是校正的判定系数 RootMSE为标准误差 standarderror 数值越小 拟合的效果越好 2 模型显著性 6 回归系数 回归系数标准误差 T值 T值 Coef Std Err P值 置信区间 置信区间 CI 0 0145294 invttail 20 0 025 0 0830332 0 0145294 2 086 0 0830332 0 15867480 0145294 2 086 0 0830332 0 1877335 3 回归系数检验 P值用于说明回归系数的显著性 一般来说P值 0 1 表示10 显著水平显著 P值 0 05 表示5 显著水平显著 P值 0 01 表示1 显著水平显著 7 4 系数标准误差计算 当自变量只有两个时 R2j就是这两个变量的相关系数 pwcorrx2x1 的平方 8 对多元回归 排除其它变量影响 的解释 9 10 简单回归和多元回归估计值的比较 11 tw functiont tden 20 x range 33 xline 0 172 086 ttail df t p计算单边P值双边时P值加倍就行了如 ttail 20 0 17498 2 0 863invttail df p t计算单边临界值在双边95 置信度 5 显著水平时的临界值为 t0 invttail 20 0 025 2 086 2 086 0 17 t0 t 0 0145294 invttail 20 0 025 0 0830332 0 0145294 2 086 0 0830332 0 15867480 0145294 2 086 0 0830332 0 1877335 5 系数置信区间 12 Stata中查临界值和p值 normalden z normal z invnormal p tden df t t df t invt df p ttail df t invttail df p chi2den df x chi2 df x invchi2 df p chi2tail df x invchi2tail df p Fden df1 df2 x F df1 df2 x invF df1 df2 p Ftail df1 df2 x invFtail df1 df2 p Ftail 2 702 3 96 0 0195 1 F 2 702 3 96 13 6 回归结果的评价 1 通过模型F检验说明线性关系是否成立 2 回归系数符号是否与理论或预期相一致 3 通过系数t检验说明y与x关系统计显著性 4 用判定系数说明回归模型在多大程度上解释了因变量y取值的差异 5 画残差直方图或正态概率图考察误差项的正态性假定是否成立 14 7 多重共线性判断 出现下列情况 暗示存在多重共线性 1 模型中各对自变量之间显著相关 相关系数检验 2 当模型的线性关系F检验显著时 几乎所有回归系数的t检验都不显著 3 回归系数的正负号与预期的相反 4 容忍度 tolerance 与方差扩大因子 varianceinflationfactor VIF 某个自变量的容忍度等于1减去该自变量对其他k 1个自变量的线性回归的判定系数 容忍度越小 多重共线性越严重 方差扩大因子等于容忍度的倒数 VIF越大 多重共线性越严重 一般认为容忍度小于0 1 VIF大于10时 存在严重的多重共线性 15 X3的VIF 3 83 1 1 0 7392 1 0 2608 1 容忍度 16 不存在完全共线性假设 允许自变量之间存在相关关系 只是不能完全相关1 一个变量是另一个变量的常数倍 如同时放入不同度量单位的同一变量2 同一变量的不同非线性函数可以成为回归元 如consume income income2但ln consume ln income ln income2 共线性 应为ln consume ln income lnincome 23 一个自变量是两个或多个自变量和线性函数 17 回归模型中包含无关变量 18 遗漏变量偏误 19 遗漏相关变量偏误 采用遗漏相关变量的模型进行估计而带来的偏误称为遗漏相关变量偏误 omittingrelevantvariablebias 设正确的模型为Y 0 1X1 2X2 却对Y 0 1X1 v进行回归 得 20 将正确模型Y 0 1X1 2X2 的离差形式 代入 得 1 如果漏掉的X2与X1相关 则上式中的第二项在小样本下求期望与大样本下求概率极限都不会为零 从而使得OLS估计量在小样本下有偏 在大样本下非一致 21 2 如果X2与X1不相关 则 1的估计满足无偏性与一致性 但这时 0的估计却是有偏的 由Y 0 1X1 v得 由Y 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论