




免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江市丹阳市访仙中学2015-2016学年八年级数学下学期第一次月考试题一、选择题(共8题,每题3分,共24分)1要了解某市九年级学生的视力状况,从中抽查了500名学生的视力状况,那么样本是指()a某市所有的九年级学生b被抽查的500名九年级学生c某市所有的九年级学生的视力状况d被抽查的500名学生的视力状况2a校女生占全校总人数的40%,b校女生占全校总人数的55%,则女生人数()aa校多于b校ba校与b校一样多ca校少于b校d不能确定3下列说法正确的是()(1)抛一枚硬币,正面一定朝上; (2)“明天的降水概率为80%”,表示明天会有80%的地方下雨(3)为了解一种灯泡的使用寿命,宜采用普查的方法; (4)掷一颗骰子,点数一定不大于6a1个b2个c3个d4个4下列图形中,既是中心对称图形又是轴对称图形的有()个线段;等边三角形;矩形;菱形;平行四边形a3个b4个c5个d2个5如图,菱形abcd中,bad=76,ab的垂直平分线ef交ac于f,则cdf的度数为()a66b52c104d866下列命题正确的是()a一组对边相等,另一组对边平行的四边形是平行四边形b对角线相互垂直的四边形是菱形c对角线相等的四边形是矩形d对角线相互垂直平分且相等的四边形是正方形7如图,abcd的对角线ac、bd相交于点o,ef、gh过点o,且点e、h在边ab上,点g、f在边cd上,向abcd内部投掷飞镖(每次均落在abcd内,且落在abcd内任何一点的机会均等)恰好落在阴影区域的概率为()abcd8如图,正方形abcd中,ab=6,点e在边cd上,且cd=3de将ade沿ae对折至afe,延长ef交边bc于点g,连接ag、cf下列结论:abgafg;bg=gc;agcf;sfgc=3其中正确结论的个数是()a1b2c3d4二、填空题(本大题共有10小题,每小题2分,共20分)9小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为10据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用统计图表示收集到的数据11在菱形abcd中,对角线ac、bd相交于点o如果ac=8,bd=6,那么菱形的周长是,菱形的面积是12已知平行四边形abcd中,a+c=200,则b的度数是13如图,在abc中,cab=62,将abc在平面内绕点a旋转到abc的位置,使ccab,则旋转角的度数为14如图,abcd与dcfe的周长相等,且bad=60,f=110,则dae的度数为15如图所示,在正方形abcd内作等边ade,则eac的度数为16如图,菱形abcd的边长为2,dab=60,e为bc的中点,在对角线ac上存在一点p,使pbe的周长最小,则pbe的周长的最小值为17如图,矩形abcd中,ab=4,ad=9,点m在bc上,且bm:mc=1:2,deam于点e,求de的长为18“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示)小亮随机地向大正方形内部区域投飞镖若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是三、计算题19某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛,它们分别是演讲、唱歌、书法、绘画要求每位同学必须参加,且限报一项活动以九年级(1)班为样本进行统计,并将统计结果绘成如图1、图2所示的两幅统计图请你结合图示所给出的信息解答下列问题(1)求出参加绘画比赛的学生人数占全班总人数的百分比?(2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?20如图,在平面直角坐标系中,abc的顶点坐标为a(2,3),b(3,2),c(1,1)(1)若将abc向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的a1b1c1;(2)画出a1b1c1绕原点顺时针旋90后得到 的a2b2c2;(3)若abc与abc是中心对称图形,则对称中心的坐标为21如图,将平行四边形abcd沿对角线bd进行折叠,折叠后点c落在点f处,df交ab于点e(1)求证:三角形deb是等腰三角形;(2)判断af与bd是否平行,并说明理由22如图,在abc中,点d是bc的中点,deac,dfab(1)当abc满足什么条件时,四边形aedf是菱形?并说明理由(2)当abc满足什么条件时,四边形aedf是正方形?(直接写出答案)23如图,在rtabc中,c=90,ac=bc=6cm,点p从点b出发,沿ba方向以每秒cm的速度向终点a运动;同时,动点q从点c出发沿cb方向以每秒1cm的速度向终点b运动,将bpq沿bc翻折,点p的对应点为点p,设q点运动的时间t秒,若四边形qpbp为菱形,求t的值多少秒?并说明理由24如图,e,f分别是矩形abcd的边ad,ab上的点,若ef=ec,且efec(1)求证:ae=dc;(2)已知dc=,求be的长25倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题(1)如图(1),点e、f分别在正方形abcd的边bc、cd上,eaf=45,连接ef,则ef=be+df,说明理由完成解题过程解:把abe绕点a逆时针旋转90至ade,点f、d、e在一条直线上(2)类比猜想请,同学们研究:如图(2),在菱形abcd中,点e、f分别在bc、cd上,当bad=120,eaf=60时,还有ef=be+df吗?请说明理由2015-2016学年江苏省镇江市丹阳市访仙中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共8题,每题3分,共24分)1要了解某市九年级学生的视力状况,从中抽查了500名学生的视力状况,那么样本是指()a某市所有的九年级学生b被抽查的500名九年级学生c某市所有的九年级学生的视力状况d被抽查的500名学生的视力状况【考点】总体、个体、样本、样本容量【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象从而找出总体、个体再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量【解答】解:样本是指被抽查的500名学生的视力状况故选d2a校女生占全校总人数的40%,b校女生占全校总人数的55%,则女生人数()aa校多于b校ba校与b校一样多ca校少于b校d不能确定【考点】频数与频率【分析】根据频率是频数与数据总和的比,可得答案【解答】解:a校的人数非常多,b小的人数非常少时,a校的女生多,a校的女生人数有可能与b校的女生人数一样多,a校的人数少时,b校的女生多,故选:d3下列说法正确的是()(1)抛一枚硬币,正面一定朝上; (2)“明天的降水概率为80%”,表示明天会有80%的地方下雨(3)为了解一种灯泡的使用寿命,宜采用普查的方法; (4)掷一颗骰子,点数一定不大于6a1个b2个c3个d4个【考点】概率的意义;全面调查与抽样调查;随机事件【分析】分别利用概率的意义以及全面调查与抽样调查和随机事件的概念判断得出即可【解答】解:(1)抛一枚硬币,正面不一定朝上,故此选项错误;(2)“明天的降水概率为80%”,表示明天会有80%的可能下雨,故此选项错误;(3)为了解一种灯泡的使用寿命,宜采用抽样调查的方法,故此选项错误; (4)掷一颗骰子,点数一定不大于6,正确则正确的有1个故选:a4下列图形中,既是中心对称图形又是轴对称图形的有()个线段;等边三角形;矩形;菱形;平行四边形a3个b4个c5个d2个【考点】中心对称图形;轴对称图形【分析】根据轴对称图形与中心对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心【解答】解:线段既是轴对称图形,又是中心对称图形符合题意;等边三角形是轴对称图形,不是中心对称图形不符合题意;矩形是轴对称图形,又是中心对称图形符合题意;菱形既是轴对称图形,又是中心对称图形符合题意平行四边形不是轴对称图形,是中心对称图形不符合题意;既是轴对称图形又是中心对称图形的有3个故选:a5如图,菱形abcd中,bad=76,ab的垂直平分线ef交ac于f,则cdf的度数为()a66b52c104d86【考点】菱形的性质【分析】连接bf,由菱形abcd中,bad的度数,则可求得fab=fba的度数,继而求得cbf的度数,然后由dcfbcf,求得答案【解答】解:连接bf,四边形abcd是菱形,且bad=76,eaf=bad=38,cd=cb,dcf=bcf,ef是ab的垂直平分线,af=bf,eaf=ebf=38,adbc,cba=180bad=104,cbf=cbaabf=10438=66,在cdf和bcf中,dcfbcf(sas),cdf=cbf=66,故选a6下列命题正确的是()a一组对边相等,另一组对边平行的四边形是平行四边形b对角线相互垂直的四边形是菱形c对角线相等的四边形是矩形d对角线相互垂直平分且相等的四边形是正方形【考点】命题与定理【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案【解答】解:a、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;b、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;c、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;d、对角线相互垂直平分且相等的四边形是正方形,此选项正确;故选d7如图,abcd的对角线ac、bd相交于点o,ef、gh过点o,且点e、h在边ab上,点g、f在边cd上,向abcd内部投掷飞镖(每次均落在abcd内,且落在abcd内任何一点的机会均等)恰好落在阴影区域的概率为()abcd【考点】几何概率;平行四边形的性质【分析】根据平行四边形的性质易得soeh=sofg,则s阴影部分=saob=s平行四边形abcd,然后根据几何概率的意义求解【解答】解:四边形abcd为平行四边形,oeh和ofg关于点o中心对称,soeh=sofg,s阴影部分=saob=s平行四边形abcd,飞镖(每次均落在abcd内,且落在abcd内任何一点的机会均等)恰好落在阴影区域的概率=故选c8如图,正方形abcd中,ab=6,点e在边cd上,且cd=3de将ade沿ae对折至afe,延长ef交边bc于点g,连接ag、cf下列结论:abgafg;bg=gc;agcf;sfgc=3其中正确结论的个数是()a1b2c3d4【考点】翻折变换(折叠问题);全等三角形的判定与性质;勾股定理【分析】根据翻折变换的性质和正方形的性质可证rtabgrtafg;在直角ecg中,根据勾股定理可证bg=gc;通过证明agb=agf=gfc=gcf,由平行线的判定可得agcf;由于sfgc=sgcesfec,求得面积比较即可【解答】解:正确理由:ab=ad=af,ag=ag,b=afg=90,rtabgrtafg(hl);正确理由:ef=de=cd=2,设bg=fg=x,则cg=6x在直角ecg中,根据勾股定理,得(6x)2+42=(x+2)2,解得x=3bg=3=63=gc;正确理由:cg=bg,bg=gf,cg=gf,fgc是等腰三角形,gfc=gcf又rtabgrtafg;agb=agf,agb+agf=2agb=180fgc=gfc+gcf=2gfc=2gcf,agb=agf=gfc=gcf,agcf;错误理由:sgce=gcce=34=6gf=3,ef=2,gfc和fce等高,sgfc:sfce=3:2,sgfc=6=3故不正确正确的个数有3个故选:c二、填空题(本大题共有10小题,每小题2分,共20分)9小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5【考点】概率的意义【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案【解答】解:掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5,故答案为:0.510据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用折线统计图表示收集到的数据【考点】统计图的选择【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目【解答】解:为了预测未来20年世界森林面积的变化趋势,可选用折线统计图表示收集到的数据故答案为:折线11在菱形abcd中,对角线ac、bd相交于点o如果ac=8,bd=6,那么菱形的周长是20,菱形的面积是24【考点】菱形的性质【分析】根据菱形的对角线可以求得菱形abcd的面积,根据菱形对角线互相垂直平分的性质,可以求得bo=od,ao=oc,在rtaod中,根据勾股定理可以求得ab的长,即可求菱形abcd的周长【解答】解:解:菱形的对角线为6、8,则菱形的面积为68=24,菱形对角线互相垂直平分,bo=od=3,ao=oc=4,ab=5,故菱形的周长为20,答:菱形的周长为20,面积为24故答案为:20;2412已知平行四边形abcd中,a+c=200,则b的度数是80【考点】平行四边形的性质【分析】根据平行四边形对角相等,邻角互补,进而得出b的度数【解答】解:平行四边形abcd中,a=c,a+b=180,a+c=200,a=c=100,b的度数是80故答案为:8013如图,在abc中,cab=62,将abc在平面内绕点a旋转到abc的位置,使ccab,则旋转角的度数为56【考点】旋转的性质【分析】先根据平行线的性质得acc=cab=62,再根据旋转的性质得cac等于旋转角,ac=ac,则利用等腰三角形的性质得acc=acc=62,然后根据三角形内角和定理可计算出cac的度数,从而得到旋转角的度数【解答】解:ccab,acc=cab=62abc在平面内绕点a旋转到abc的位置,cac等于旋转角,ac=ac,acc=acc=62,cac=180accacc=180262=56,旋转角为56故答案为5614如图,abcd与dcfe的周长相等,且bad=60,f=110,则dae的度数为25【考点】平行四边形的性质【分析】由,abcd与dcfe的周长相等,可得到ad=de即ade是等腰三角形,再由且bad=60,f=110,即可求出dae的度数【解答】解:abcd与dcfe的周长相等,且cd=cd,ad=de,dae=dea,bad=60,f=110,adc=120,cdef=110,ade=360120110=130,dae=25,故答案为:2515如图所示,在正方形abcd内作等边ade,则eac的度数为15【考点】正方形的性质;等边三角形的性质【分析】根据正方形的性质求得cad的度数,根据等边三角形的性质求得dae的度数,从而求解【解答】解:四边形abcd是正方形,bad=90,ac平分bad,cad=45ade是等边三角形,dae=60,eac=15故答案为1516如图,菱形abcd的边长为2,dab=60,e为bc的中点,在对角线ac上存在一点p,使pbe的周长最小,则pbe的周长的最小值为+1【考点】轴对称-最短路线问题;菱形的性质【分析】连接bd,与ac的交点即为使pbe的周长最小的点p;由菱形的性质得出bpc=90,由直角三角形斜边上的中线性质得出pe=be,证明pbe是等边三角形,得出pb=be=pe=1,即可得出结果【解答】解:连结debe的长度固定,要使pbe的周长最小只需要pb+pe的长度最小即可,四边形abcd是菱形,ac与bd互相垂直平分,pd=pb,pb+pe的最小长度为de的长,菱形abcd的边长为2,e为bc的中点,dab=60,bcd是等边三角形,又菱形abcd的边长为2,bd=2,be=1,de=,pbe的最小周长=de+be=+1,故答案为: +117如图,矩形abcd中,ab=4,ad=9,点m在bc上,且bm:mc=1:2,deam于点e,求de的长为【考点】矩形的性质【分析】根据比例求出bm,再利用勾股定理列式求出am,然后求出abm和dea,再根据相似三角形对应边成比例列式计算即可得解【解答】解:四边形abcd是矩形,bc=ad=9,b=90,bm:mc=1:2,bm=9=3,在rtabm中,am=5,deam,aed=90,dae+ade=90,bam+dae=90,bam=ade,又b=aed=90,abmdea,即,de=;故答案为:18“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示)小亮随机地向大正方形内部区域投飞镖若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是【考点】几何概率;勾股定理【分析】首先确定小正方形的面积在大正方形中占的比例,根据这个比例即可求出针扎到小正方形(阴影)区域的概率【解答】解:直角三角形的两条直角边的长分别是2和1,则小正方形的边长为1,根据勾股定理得大正方形的边长为, =,针扎到小正方形(阴影)区域的概率是三、计算题19某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛,它们分别是演讲、唱歌、书法、绘画要求每位同学必须参加,且限报一项活动以九年级(1)班为样本进行统计,并将统计结果绘成如图1、图2所示的两幅统计图请你结合图示所给出的信息解答下列问题(1)求出参加绘画比赛的学生人数占全班总人数的百分比?(2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?【考点】条形统计图;用样本估计总体;扇形统计图【分析】(1)各个项目的人数的和就是总人数,然后利用参加绘画比赛的学生数除以总人数即可求解;(2)利用对应的百分比乘以360度即可求解;(3)利用总人数600乘以对应的百分比即可求解【解答】解:(1)学生的总数是:100%=50(人),参加书法比赛的学生所占的比例是:100%=20%,则参加绘画比赛的学生所占的比例是:128%40%20%=12%,(2)参加书法比赛的学生所占的比例是20%,则扇形的圆心角的度数是:36020%=72;(3)参加演讲比赛的人数是:60028%=168(人),参加唱歌比赛的人数是:60040%=240(人)20如图,在平面直角坐标系中,abc的顶点坐标为a(2,3),b(3,2),c(1,1)(1)若将abc向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的a1b1c1;(2)画出a1b1c1绕原点顺时针旋90后得到 的a2b2c2;(3)若abc与abc是中心对称图形,则对称中心的坐标为(1,0)【考点】作图-旋转变换;作图-平移变换【分析】(1)首先将a、b、c三点分别向右平移3个单位,再向上平移1个单位,得a1、b1、c1三点,顺次连接这些点,即可得到所求作的三角形;(2)找出点b、c绕点a顺时针旋转90的位置,然后顺次连接即可;(3)abc与abc是中心对称图形,连接对应点即可得出答案【解答】解:(1)将a,b,c,分别右平移3个单位长度,再向上平移1个单位长度,可得出平移后的a1b1c1;(2)将a1b1c1三顶点a1,b1,c1,绕原点旋转90,即可得出a2b2c2;(3)abc与abc是中心对称图形,连接aa,bbcc可得出交点:(1,0),故答案为:(1,0)21如图,将平行四边形abcd沿对角线bd进行折叠,折叠后点c落在点f处,df交ab于点e(1)求证:三角形deb是等腰三角形;(2)判断af与bd是否平行,并说明理由【考点】翻折变换(折叠问题);平行线的判定;等腰三角形的判定【分析】(1)由折叠和平行线的性质易证edb=ebd;(2)afdb;首先证明ae=ef,得出afe=eaf,然后根据三角形内角和与等式性质可证明bde=afe,所以afbd【解答】解:(1)由折叠可知:cdb=edb,四边形abcd是平行四边形,dcab,cdb=ebd,edb=ebd,bde是等边三角形;(2)afdb;edb=ebd,de=be,由折叠可知:dc=df,四边形abcd是平行四边形,dc=ab,df=ab,ae=ef,eaf=efa,在bed中,edb+ebd+deb=180,2edb+deb=180,同理,在aef中,2efa+aef=180,deb=aef,edb=efa,afdb22如图,在abc中,点d是bc的中点,deac,dfab(1)当abc满足什么条件时,四边形aedf是菱形?并说明理由(2)当abc满足什么条件时,四边形aedf是正方形?(直接写出答案)【考点】正方形的判定;菱形的判定【分析】(1)先证明四边形aedf是平行四边形,再证出fda=fad,得出af=df,即可得出结论(2)根据有一个角是直角的菱形是正方形可得abc是等腰直角三角形时,四边形aedf是正方形【解答】解:(1)当ab=ac时,四边形aedf是菱形;理由如下:deac,dfab,deaf,dfae,四边形aedf是平行四边形,ead=fda;adbc,ab=ac,ad是bac的平分线,ead=fad,fda=fad,af=df(等角对等边),四边形aedf是菱形(一组邻边相等的平行四边形是菱形)(2)当abc是等腰直角三角形时,四边形aedf是正方形由(1)可得:当ab=ac时,四边形aedf是菱形,bac=90,四边形aedf是正方形(有一个角是直角的菱形是正方形)23如图,在rtabc中,c=90,ac=bc=6cm,点p从点b出发,沿ba方向以每秒cm的速度向终点a运动;同时,动点q从点c出发沿cb方向以每秒1cm的速度向终点b运动,将bpq沿bc翻折,点p的对应点为点p,设q点运动的时间t秒,若四边形qpbp为菱形,求t的值多少秒?并说明理由【考点】菱形的判定;翻折变换(折叠问题)【分析】根据等腰直角三角形的性质可得abc=45,再表示出bp、bq,然后根据翻折的性质和菱形对角线互相垂直平分列出方程求解即可【解答】解:若四边形qpbp为菱形,t=2秒;理由如下:c=90,ac=bc,abc是等腰直角三角形,abc=45,点p的速度是每秒cm,点q的速度是每秒1cm,bp=tcm,bq=(6t)cm,四边形qpbp为菱形,t=,解得:t=2;即若四边形qpbp为菱形,t的值为2秒24如图,e,f分别是矩形abcd的边ad,ab上的点,若ef=ec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电信云基础知识培训内容课件
- 申通仲裁课件
- 影视与语文综合实践活动研究
- 田径场安全知识培训内容课件
- QQ游戏属于教学课件吗
- 新解读《GB-T 36767-2018醇胺类脱硫脱碳剂净化性能评价方法》
- 江苏南京2020-2023年中考满分作文53篇
- 月考试题(范围:第八、九单元)(含答案)2025-2026学年三年级数学上册(人教版)
- 广东省东莞市常香江中龙五校2024-2025学年八年级上学期期末生物试题(含答案)
- 新解读《GB-T 9999.2-2018中国标准连续出版物号 第2部分:ISSN》
- 合作社和公司合作协议书(2篇)
- 路试作业安全操作规程(4篇)
- keycloak中文使用文档-Keycloak使用手册(打印版)
- 医药代表大客户管理经验分享
- 教师安全教育培训内容
- 人教版八年级下册地理2024-2025学年八年级下册地理期末综合测试卷(二)(含答案)
- 密态深度学习-记录
- 医院医学院医疗机构培训《烧伤病人护理教学查房》课件
- 家政服务协议书范本
- 中小学生研学旅行投标方案(技术方案)
- 成人手术后疼痛评估与护理-中华护理学会团体标准2023 2
评论
0/150
提交评论