江苏省镇江市扬中二中高二数学上学期期末考试试卷(一)(含解析).doc_第1页
江苏省镇江市扬中二中高二数学上学期期末考试试卷(一)(含解析).doc_第2页
江苏省镇江市扬中二中高二数学上学期期末考试试卷(一)(含解析).doc_第3页
江苏省镇江市扬中二中高二数学上学期期末考试试卷(一)(含解析).doc_第4页
江苏省镇江市扬中二中高二数学上学期期末考试试卷(一)(含解析).doc_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014-2015学年江苏省镇江市扬中二中高二(上)期末数学试卷(一)一、填空题1已知条件p:x1,条件q:,则p是q的条件2命题“x0,3,使x22x+m0”是假命题,则实数m的取值范围为3(2015张家港市校级模拟)已知函数f(x)=2f(1)lnxx,则f(x)的极大值为4若直线y=x+b为函数的一条切线,则实数b=5在平面直角坐标系xoy中,记不等式组表示的平面区域为d若对数函数y=logax(a1)的图象与d有公共点,则a的取值范围是6若一个圆锥的侧面展开图是面积为2的半圆面,则该圆锥的体积为7已知p:2x11,q:13mx3+m(m0),若p是q的必要不充分条件,则实数m的取值范围为8函数的图象经过四个象限,则a的取值范围是9已知函数f(x)=x3x23x,直线l:9x+2y+c=0若当x2,2时,函数y=f(x)的图象恒在直线l的下方,则c的取值范围是10若椭圆=1(mn0)和双曲线=1(a0,b0)有相同的焦点f1,f2,p是两条曲线的一个交点,则pf1pf2的值是11已知椭圆的上焦点为f,直线x+y+1=0和x+y1=0与椭圆相交于点a,b,c,d,则af+bf+cf+df=12在平面直角坐标系xoy中,圆c的方程为x2+y28x+15=0,若直线y=kx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆c有公共点,则k的最大值是13长为6的线段ab两端点在抛物线x2=4y上移动,在线段ab中点纵坐标的最小值为14定义在r上的函数f(x)满足:f(x)1f(x),f(0)=6,f(x)是f(x)的导函数,则不等式exf(x)ex+5(其中e为自然对数的底数)的解集为二、解答题(共6小题,满分46分)15已知p:实数x满足x24ax+3a20,其中a0; q:实数x满足2x3(1)若a=1,且pq为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围16在四棱锥sabcd中,abcd,ab=bc=2,cd=sd=1,bccd,m为sb的中点,ds面sab(1)求证:cm面sad;(2)求证:cdsd;(3)求四棱锥sabcd的体积17(某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3a5)元的管理费,预计当每件产品的售价为x(9x11)元时,一年的销售量为(12x)2万件(1)求分公司一年的利润l(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润l最大,并求出l的最大值q(a)18已知抛物线y2=2px(p0)的焦点为f,a是抛物线上横坐标为4、且位于x轴上方的点,a到抛物线准线的距离等于5过a作ab垂直于y轴,垂足为b,ob的中点为m(1)求抛物线方程;(2)过m作mnfa,垂足为n,求点n的坐标;(3)以m为圆心,mb为半径作圆m,当k(m,0)是x轴上一动点时,讨论直线ak与圆m的位置关系19如图,已知椭圆c:=1(ab0)的离心率为,以椭圆c的左顶点t为圆心作圆t:(x+2)2+y2=r2(r0),设圆t与椭圆c交于点m与点n(1)求椭圆c的方程;(2)求的最小值,并求此时圆t的方程;(3)设点p是椭圆c上异于m,n的任意一点,且直线mp,np分别与x轴交于点r,s,o为坐标原点,求证:|or|os|为定值20设函数f(x)=x2,g(x)=alnx+bx(a0)(1)若f(1)=g(1),f(1)=g(1)求f(x)=f(x)g(x)的极小值;(2)在(1)的结论下,是否存在实常数k和m,使得f(x)kx+m和g(x)kx+m同时成立?若存在,求出k和m的值若不存在,说明理由(3)设g(x)=f(x)+2g(x)有两个零点x1和x2,若x0=,试探究g(x0)值的符号2014-2015学年江苏省镇江市扬中二中高二(上)期末数学试卷(一)参考答案与试题解析一、填空题1已知条件p:x1,条件q:,则p是q的充分不必要条件考点: 充要条件专题: 阅读型分析: 先求出条件q满足的条件,然后求出p,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题p的关系解答: 解:条件q:,即x0或x1p:x1pq为真且qp为假命题,即p是q的充分不必要条件故答案为:充分不必要点评: 判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系2命题“x0,3,使x22x+m0”是假命题,则实数m的取值范围为(1,+)考点: 特称命题专题: 简易逻辑分析: 写出命题的否命题,据已知命题为假命题,得到否命题为真命题;分离出m;通过导函数求出不等式右边对应函数的在范围,求出m的范围解答: 解:命题“x0,3时,满足不等式x22x+m0是假命题,命题“x0,3时,满足不等式x22x+m0”是真命题,mx2+2x在0,3上恒成立,令f(x)=x2+2x,x0,3,f(x)max=f(1)=1,m1故答案为:(1,+)点评: 本题考查了命题的真假判断与应用、二次函数恒成立问题解答关键是将问题等价转化为否命题为真命题即不等式恒成立,进一步将不等式恒成立转化为函数的最值3(2015张家港市校级模拟)已知函数f(x)=2f(1)lnxx,则f(x)的极大值为2ln22考点: 利用导数研究函数的极值专题: 导数的综合应用分析: 先求导数,当x=1时,即可得到f(1),再令导数大于0或小于0,解出x的范围,即得到函数的单调区间,进而可得函数的极大值解答: 解:由于函数f(x)=2f(1)lnxx,则f(x)=2f(1)1(x0),f(1)=2f(1)1,故f(1)=1,得到f(x)=21=,令f(x)0,解得:x2,令f(x)0,解得:x2,则函数在(0,2)上为增函数,在(2,+)上为减函数,故f(x)的极大值为f(2)=2ln22故答案为:2ln22点评: 本题考查了利用导数研究函数的极值,属于基础题4若直线y=x+b为函数的一条切线,则实数b=2考点: 利用导数研究曲线上某点切线方程专题: 计算题;导数的概念及应用分析: 设切点为p(m,n),求出函数的导数,得切线斜率为1=,再根据切点p既在切线y=x+b上又在函数图象上,列出关于m、n、b的方程组,解之即可得到实数b之值解答: 解:函数的导数为设直线y=x+b与函数相切于点p(m,n),则解之得m=n=1,b=2或m=n=1,b=2综上所述,得b=2故答案为:2点评: 本题给出已知函数图象的一条切线,求参数b的值,着重考查了导数的运算公式与法则和利用导数研究曲线上某点切线方程等知识,属于基础题5在平面直角坐标系xoy中,记不等式组表示的平面区域为d若对数函数y=logax(a1)的图象与d有公共点,则a的取值范围是(1,考点: 简单线性规划专题: 不等式的解法及应用分析: 作出不等式组对应的平面区域,根据对数函数的图象和性质,即可得到结论解答: 解:作出不等式组对应的平面区域如图:若a1,当对数函数图象经过点a时,满足条件,此时,解得,即a(2,3),此时loga2=3,解得a=,当1a时,满足条件实数a的取值范围是1a,故答案为:(1,点评: 本题主要考查线性规划的应用,利用对数函数的图象和性质,通过数形结合是解决本题的关键6若一个圆锥的侧面展开图是面积为2的半圆面,则该圆锥的体积为考点: 旋转体(圆柱、圆锥、圆台)专题: 计算题分析: 通过侧面展开图的面积求出圆锥的母线,底面的半径,求出圆锥的体积即可解答: 解:由题意一个圆锥的侧面展开图是面积为2的半圆面,因为4=l2,所以l=2,半圆的弧长为2,圆锥的底面半径为2r=2,r=1,所以圆锥的体积为:=故答案为:点评: 本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力7已知p:2x11,q:13mx3+m(m0),若p是q的必要不充分条件,则实数m的取值范围为8,+)考点: 必要条件、充分条件与充要条件的判断专题: 简易逻辑分析: 将条件p是q的必要不充分条件,转化为q是p的必要不充分条件,进行求解解答: 解:因为p是q的必要不充分条件,所以q是p的必要不充分条件,即pq,但q推不出p,即,即,所以m8故答案为:8,+)点评: 本题主要考查充分条件和必要条件的应用,利用逆否命题的等价性,将条件进行转化是解决本题的关键,主要端点等号的取舍8函数的图象经过四个象限,则a的取值范围是(96,15)考点: 利用导数研究函数的极值专题: 导数的概念及应用分析: 首先讨论a=0时原函数图象的情况,当a0时,求出原函数的导函数,分a0和a0两种情况讨论原函数的单调性,求出函数的极值点并求解极值,当a0时,要使原函数的图象经过四个象限,需要极大值大于0,且极小值小于0,此时a的值不存在;当a0时,要使原函数的图象经过四个象限,则需要极小值小于0,且极大值大于0,由此解得a的取值范围解答: 解:由,若a=0时,原函数化为f(x)=80为常数函数,不合题意;f(x)=ax2+ax2a=a(x2+x2)=a(x+2)(x1)若a0时,当x(,2),x(1,+)时有f(x)0,函数f(x)在(,2),(1,+)上为增函数当x(2,1)时,f(x)0,函数f(x)在(2,1)上为减函数所以函数f(x)在x=2时取得极大值=函数f(x)在x=1时取得极小值因为函数的图象先增后减再增,要使函数的图象经过四个象限,则,解得:a15解得:a96此时a;若a0,当x(,2),x(1,+)时有f(x)0,函数f(x)在(,2),(1,+)上为减函数当x(2,1)时,f(x)0,函数f(x)在(2,1)上为增函数所以函数f(x)在x=2时取得极小值=函数f(x)在x=1时取得极大值为函数的图象先减后增再减,要使函数的图象经过四个象限,则,解得96a15所以使函数的图象经过四个象限的a的取值范围是(96,15)故答案为(96,15)点评: 本题考查了利用导数研究函数的极值,考查了函数的极值与函数图象之间的关系,思考该问题时考虑数与形的结合,属中档题9已知函数f(x)=x3x23x,直线l:9x+2y+c=0若当x2,2时,函数y=f(x)的图象恒在直线l的下方,则c的取值范围是c考点: 利用导数求闭区间上函数的最值专题: 导数的综合应用分析: 分离参数,构造函数,求出函数再闭区间上的最值即可解答: 解:当x2,2时,函数y=f(x)的图象恒在直线l的下方,即x3x23xx,在x2,2时恒成立,即cx3+2x23x,令g(x)=x3+2x23x,g(x)=2x2+4x3,g(x)=2x2+4x3=2(x1)210恒成立,g(x)在2,2上单调递减,故当x2,2时,g(x)min=g(2)=c,故答案为:c,点评: 本题主要考查函数的求导运算、闭区间上的恒成立问题闭区间上的恒成立问题一般都是转化为求最值,即使参数大于最大值或小于最小值的问题10若椭圆=1(mn0)和双曲线=1(a0,b0)有相同的焦点f1,f2,p是两条曲线的一个交点,则pf1pf2的值是ma2考点: 椭圆的简单性质;双曲线的简单性质专题: 圆锥曲线的定义、性质与方程分析: 运用椭圆和双曲线的定义写出两个定义式,然后平方,观察之后,两式相减,求出整体未知数pf1pf2的值解答: 解析:pf1+pf2=2,|pf1pf2|=2a,所以pf+pf+2pf1pf2=4m,pf2pf1pf2+pf=4a2,两式相减得:4pf1pf2=4m4a2,pf1pf2=ma2故答案:ma2点评: 本题主要考查圆锥曲线的综合问题解决本题的关键在于根据椭圆和双曲线有相同的焦点f1、f2,利用定义化简11( 2011南京校级模拟)已知椭圆的上焦点为f,直线x+y+1=0和x+y1=0与椭圆相交于点a,b,c,d,则af+bf+cf+df=8考点: 椭圆的应用;直线与圆锥曲线的综合问题专题: 计算题分析: 由题意可知ab=cf+df=,则af+bf+ab=4a=8,进而可得af+bf=8ab=8,由此可知答案解答: 解:直线x+y+1=0代入椭圆,并整理得7x2+6x9=0,设a(x1,y1),b(x2,y2),则,同理,可得cd=cf+df=af+bf+ab=4a=8,af+bf=8ab=8,af+bf+cf+df=(8)+=8答案:8点评: 本题考查椭圆的性质及其应用,解题时要注意公式的灵活运用12在平面直角坐标系xoy中,圆c的方程为x2+y28x+15=0,若直线y=kx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆c有公共点,则k的最大值是考点: 圆与圆的位置关系及其判定;直线与圆的位置关系专题: 直线与圆分析: 由于圆c的方程为(x4)2+y2=1,由题意可知,只需(x4)2+y2=1与直线y=kx2有公共点即可解答: 解:圆c的方程为x2+y28x+15=0,整理得:(x4)2+y2=1,即圆c是以(4,0)为圆心,1为半径的圆;又直线y=kx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆c有公共点,只需圆c:(x4)2+y2=1与直线y=kx2有公共点即可设圆心c(4,0)到直线y=kx2的距离为d,则d=2,即3k24k0,0kk的最大值是故答案为:点评: 本题考查直线与圆的位置关系,将条件转化为“(x4)2+y2=4与直线y=kx2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题13长为6的线段ab两端点在抛物线x2=4y上移动,在线段ab中点纵坐标的最小值为2考点: 抛物线的简单性质专题: 空间位置关系与距离分析: 如图所示,设线段ab的中点为m,分别过点a,b,c,作adx轴,bex轴,mnx轴,垂足分别为d,e,n利用梯形的中位线和抛物线的定义可得|mn|=(|ad|+|be|)=(|af|1+|bf|1)(|ab|2)即可得出解答: 解:如图所示,设线段ab的中点为m,分别过点a,b,c,作adx轴,bex轴,mnx轴,垂足分别为d,e,n则|mn|=(|ad|+|be|)=(|af|1+|bf|1) (|ab|2)=(62)=2当且仅当线段ab过焦点时取等号故ab的中点到y轴的距离的最小值为2故答案为:2点评: 本题考查了抛物线的定义和梯形的中位线定理,考查了分析问题和解决问题的能力14定义在r上的函数f(x)满足:f(x)1f(x),f(0)=6,f(x)是f(x)的导函数,则不等式exf(x)ex+5(其中e为自然对数的底数)的解集为(0,+)考点: 导数的乘法与除法法则专题: 函数的性质及应用分析: 构造函数g(x)=exf(x)ex,(xr),研究g(x)的单调性,结合原函数的性质和函数值,即可求解解答: 解:设g(x)=exf(x)ex,(xr),则g(x)=exf(x)+exf(x)ex=exf(x)+f(x)1,f(x)1f(x),f(x)+f(x)10,g(x)0,y=g(x)在定义域上单调递增,exf(x)ex+5,g(x)5,又g(0)=e0f(0)e0=61=5,g(x)g(0),x0,不等式的解集为(0,+)故答案为:(0,+)点评: 本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键二、解答题(共6小题,满分46分)15已知p:实数x满足x24ax+3a20,其中a0; q:实数x满足2x3(1)若a=1,且pq为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围考点: 复合命题的真假专题: 简易逻辑分析: (1)先通过解一元二次不等式求出p下的x的取值范围:ax3a,a=1时,所以p:1x3根据pq为真得p,q都真,所以,所以解该不等式组即得x的取值范围;(2)若p是q的必要不充分条件,则:,所以解该不等式组即得a的取值范围解答: 解:(1)p:由原不等式得,(x3a)(xa)0,a0为,所以ax3a;当a=1时,得到1x3;q:实数x满足2x3;若pq为真,则p真且q真,实数x的取值范围是:(2,3);(2)p是q的必要不充分条件,即由p得不到q,而由q能得到p;,解得1a2;实数a的取值范围是(1,2点评: 考查解一元二次不等式,pq的真假和p,q真假的关系,以及充分条件、必要条件、必要不充分条件的概念16在四棱锥sabcd中,abcd,ab=bc=2,cd=sd=1,bccd,m为sb的中点,ds面sab(1)求证:cm面sad;(2)求证:cdsd;(3)求四棱锥sabcd的体积考点: 棱柱、棱锥、棱台的体积;直线与平面平行的判定专题: 空间位置关系与距离分析: (1)利用平行线中的一条直线与令一条直线垂直,推出另一条直线垂直证明cdsd;(2)取sa中点n,连接nd,nm,证明nmcd是平行四边形,通过ndmc,证明cm面sad;(3)利用vsabcd:vsabd=sabcd:sabd,求出vsabd,即可求四棱锥sabcd的体积解答: (1)证明:取sa的中点,m为sb的中点,mnab,mn=,ab=2,cd=1,mncd,mn=dc,四边形mndc为平行四边形,cmnd,nd面sad,cm面sad;cm面sad证明:(2)ds面sab,ab面sabdsab,abdc,dsdc,解:(3)vsabcd:vsabd=sabcd:sabd=3:2,过d作dhab,交于h,由题意得,bd=ad=,在rtdsa,rtdsb中,sa=sb=2所以,vsabd=vdsab=sabsds=,四棱锥sabcd的体积为:=;点评: 考查直线与直线垂直,直线与平面平行的证明,几何体的体积的求法,考查空间想象能力,计算能力17(某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3a5)元的管理费,预计当每件产品的售价为x(9x11)元时,一年的销售量为(12x)2万件(1)求分公司一年的利润l(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润l最大,并求出l的最大值q(a)考点: 导数在最大值、最小值问题中的应用专题: 应用题分析: (1)根据题意先求出每件产品的利润,再乘以一年的销量,便可求出分公司一年的利润l(万元)与每件产品的售价x的函数关系式;(2)根据l与x的函数关系式先求出该函数的导数,令l(x)=0便可求出极值点,从而求出时最大利润,再根据a的取值范围分类讨论当a取不同的值时,最大利润各为多少解答: 解:(1)分公司一年的利润l(万元)与售价x的函数关系式为:l=(x3a)(12x)2,x9,11(2)l(x)=(12x)2+2(x3a)(12x)(1)=(12x)22(x3a)(12x)=(12x)(18+2a3x)令l(x)=0得x=6+a或x=12(不合题意,舍去)3a5,86+a在x=6+a两侧l的值由正值变负值所以,当86+a9,即3a时,lmax=l(9)=(93a)(129)2=9(6a);当96+a,即a5时,lmax=l(6+a)=(6+a3a)12(6+a)2=4(3a)3,即当3a时,当每件售价为9元,分公司一年的利润l最大,最大值q(a)=9(6a)万元;当a5时,当每件售价为(6+a)元,分公司一年的利润l最大,最大值q(a)=4(3a)3万元点评: 本题主要考查了函数的导数的求法以及利用导数来求得函数的最值问题,是各地高考的热点和难点,解题时注意自变量的取值范围以及分类讨论等数学思想的运用,属于中档题18已知抛物线y2=2px(p0)的焦点为f,a是抛物线上横坐标为4、且位于x轴上方的点,a到抛物线准线的距离等于5过a作ab垂直于y轴,垂足为b,ob的中点为m(1)求抛物线方程;(2)过m作mnfa,垂足为n,求点n的坐标;(3)以m为圆心,mb为半径作圆m,当k(m,0)是x轴上一动点时,讨论直线ak与圆m的位置关系考点: 抛物线的标准方程;直线与圆的位置关系;抛物线的简单性质专题: 综合题;压轴题分析: ()抛物线的准线为 ,于是 ,p=2,由此可知抛物线方程为y2=4x()由题意得b,m的坐标,直线fa的方程,直线mn的方程,由此可知点n的坐标即可;()由题意得,圆m的圆心坐标为(0,2),半径为2当m=4时,直线ap的方程为x=4,此时,直线ap与圆m相离;当m4时,写出直线ap的方程,圆心m(0,2)到直线ap的距离,由此可判断直线ap与圆m的位置关系解答: 解:(1)抛物线,p=2抛物线方程为y2=4x(2)点a的坐标是(4,4),由题意得b(0,4),m(0,2),又f(1,0),则fa的方程为y=(x1),mn的方程为*k*s*5*u解方程组,(3)由题意得,圆m的圆心是点(0,2),半径为2当m=4时,直线ak的方程为x=4,此时,直线ak与圆m相离,当m4时,直线ak的方程为,即为4x(4m)y4m=0,圆心m(0,2)到直线ak的距离,令d2,解得m1当m1时,直线ak与圆m相离;当m=1时,直线ak与圆m相切;当m1时,直线ak与圆m相交点评: 本题考查抛物线的标准方程、抛物线的简单性质、直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答19如图,已知椭圆c:=1(ab0)的离心率为,以椭圆c的左顶点t为圆心作圆t:(x+2)2+y2=r2(r0),设圆t与椭圆c交于点m与点n(1)求椭圆c的方程;(2)求的最小值,并求此时圆t的方程;(3)设点p是椭圆c上异于m,n的任意一点,且直线mp,np分别与x轴交于点r,s,o为坐标原点,求证:|or|os|为定值考点: 直线与圆锥曲线的关系;圆的标准方程;椭圆的标准方程专题: 综合题;圆锥曲线的定义、性质与方程分析: (1)依题意,得a=2,由此能求出椭圆c的方程(2)法一:点m与点n关于x轴对称,设m(x1,y1),n(x1,y1),设y10由于点m在椭圆c上,故由t(2,0),知=,由此能求出圆t的方程法二:点m与点n关于x轴对称,故设m(2cos,sin),n(2cos,sin),设sin0,由t(2,0),得=,由此能求出圆t的方程(3)法一:设p(x0,y0),则直线mp的方程为:,令y=0,得,同理:,(10分)故,由此能够证明|or|os|=|xr|xs|=|xrxs|=4为定值 法二:设m(2cos,sin),n(2cos,sin),设sin0,p(2cos,sin),其中sinsin则直线mp的方程为:,由此能够证明|or|os|=|xr|xs|=|xrxs|=4为定值解答: 解:(1)依题意,得a=2,c=,b=1,故椭圆c的方程为(3分)(2)方法一:点m与点n关于x轴对称,设m(x1,y1),n(x1,y1),不妨设y10由于点m在椭圆c上,所以 (*) (4分)由已知t(2,0),则,=(x1+2)2=(6分)由于2x12,故当时,取得最小值为由(*)式,故,又点m在圆t上,代入圆的方程得到故圆t的方程为:(8分)方法二:点m与点n关于x轴对称,故设m(2cos,sin),n(2cos,sin),不妨设sin0,由已知t(2,0),则=(2cos+2)2sin2=5cos2+8cos+3=(6分)故当时,取得最小值为,此时,又点m在圆t上,代入圆的方程得到故圆t的方程为: (8分)(3)方法一:设p(x0,y0),则直线mp的方程为:,令y=0,得,同理:,(10分)故 (*) (11分)又点m与点p在椭圆上,故,(12分)代入(*)式,得:所以|or|os|=|xr|xs|=|xrxs|=4为定值 方法二:设m(2cos,sin),n(2cos,sin),不妨设sin0,p(2cos,sin),其中sinsin则直线mp的方程为:,令y=0,得,同理:,(12分)故所以|or|os|=|xr|xs|=|xrxs|=4为定值点评: 本题考查椭圆的方程和几何性质、圆的方程等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想20设函数f(x)=x2,g(x)=alnx+bx(a0)(1)若f(1)=g(1),f(1)=g(1)求f(x)=f(x)g(x)的极小值;(2)在(1)的结论下,是否存在实常数k和m,使得f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论