第23课 矩形、菱形、正方形.doc_第1页
第23课 矩形、菱形、正方形.doc_第2页
第23课 矩形、菱形、正方形.doc_第3页
第23课 矩形、菱形、正方形.doc_第4页
第23课 矩形、菱形、正方形.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Http:/第23课矩形、菱形、正方形QQ375778001 四川省营山县木桥完全小学校初中部 刘万成第一部分 讲解部分(一)课标要求1.理解矩形、菱形、正方形的定义、特征和识别方法。2.了解矩形、菱形、正方形的面积公式,中点四边形和重心的物理意义。3.会求特殊平行四边形与函数、三角函数有关问题,能解决特殊平行四边形中涉及全等、相似和其它几何变换的问题,进一步提高分析问题,解决问题的能力。(二)知识要点知识点1:矩形1.定义:有一个角是直角的平行四边形叫做矩形 2.性质:(1)矩形的四个角都是直角 (2)矩形的对角线相等 (3)具备平行四边形的性质 3.判定:(1)有一个角是直角的平行四边形是矩形(定义) (2)对角线相等的平行四边形是矩形 知识点2:菱形1.定义:有一组邻边相等的平行四边形叫做菱形 2.性质:(1)菱形的四条边都相等 (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角 (3)具备平行四边形的性质 3.判定:(1)一组邻边相等的平行四边形是菱形(定义) (2)对角线互相垂直的平行四边形是菱形 (3)四边相等的四边形是菱形 知识点3:正方形1.定义:有一组邻边相等且有一个角是直角的平行四边形是正方形 2.性质:既具备矩形的性质,又具备菱形的性质 3.判定:(1)对角线相等的菱形是正方形。 (2)有一个角为直角的菱形是正方形。(3)对角线互相垂直的矩形是正方形。 (4)一组邻边相等的矩形是正方形。(5)一组邻边相等且有一个角是直角的平行四边形是正方形。 (6)对角线互相垂直且相等的平行四边形是正方形。 (7)对角线互相垂直,平分且相等的四边形是正方形。 (8)一组邻边相等,有三个角是直角的四边形是正方形。 (9)既是菱形又是矩形的四边形是正方形。 (三)考点精讲考点一 : 矩形的性质及判定的应用。例1 (2011山东滨州,24,10分)如图,在ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MNBC.设MN交BCA的平分线于点E,交BCA的外角平分线于点F,连接AE、AF。那么当点O运动到何下时,四边形AECF是矩形?并证明你的结论。【分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形由于CE平分BAC,那么有1=2,而MNBC,利用平行线的性质有1=3,等量代换有2=3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是BCA及其外角的平分线,易证ECF是90,从而可证四边形AECF是矩形【解答】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形证明:CE平分BCA,1=2,又MNBC,1=3,3=2,EO=CO,同理,FO=CO,EO=FO,又OA=OC,四边形AECF是平行四边形,又1=2,4=5,1+5=2+4,又1+5+2+4=180,2+4=90,四边形AECF是矩形【评注】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF是平行四边形,并证明ECF是90考点二 : 菱形的性质及判定的应用。例2 (2010眉山21)如图,O为矩形ABCD对角线的交点,DEAC,CEBD(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积【分析】(1)首先可根据DEAC、CEBD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积【解答】解:(1)四边形OCED是菱形DEAC,CEBD,四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,四边形OCED是菱形(2)连接OE由菱形OCED得:CDOE,OEBC又CEBD四边形BCEO是平行四边形;OE=BC=8(7分)S四边形OCED=OECD=86=24【评注】本题主要考查矩形的性质,平行四边形、菱形的判定,菱形面积的求法;菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:定义;四边相等;对角线互相垂直平分考点三 :正方形的性质及判定的应用。例3 (2011广东肇庆,20,7分)如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED(1)求证:BECDEC;(2)延长BE交AD于点F,若DEB 140,求AFE的度数 ABCDEF【分析】(1)根据正方形的性质得出CD=CB,DCA=BCA,根据SAS即可证出结论;(2)根据对顶角相等求出AEF,根据正方形的性质求出DAC,根据三角形的内角和定理求出即可【答案】解:(1)证明:四边形ABCD 是正方形 CDCB, AC是正方形的对角线 DCABCA 又 CE CE BECDEC (2)DEB 140由BECDEC可得DEC BEC140270, AEF BEC70,又AC是正方形的对角线, DAB90 DAC BAC90245, 在AEF中,AFE180 70 4565 【评注】本题主要考查对正方形的性质全等三角形的性质和判定,三角形的内角和定理,对顶角等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键考点四 :中点四边形顺次连接四边形各边中点所得的四边形称为中点四边形。例4 (2011邵阳,19,3分)在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE(1)请判断四边形EFGH的形状,并给予证明;(2)试添加一个条件,使四边形EFGH是菱形(写出你添加的条件,不要求证明)【分析】(1)连接AC、BD,根据三角形的中位线定理得到EFAC,EF=AC,HGAC,HG=AC,推出EF=HG,EFHG即可;(2)根据三角形的中位线定理得到EF=AC,GF=BD,AC=BD,推出EF=GF,由(1)即可推出答案【解答】(1)四边形EFGH的形状是平行四边形证明:连接AC、BD,E、F、G、H分别是AB、BC、CD、DA的中点,EFAC,EF=AC,HGAC,HG=AC,GF=BD,EF=HG,EFHG,四边形EFGH是平行四边形(2)添加的条件是AC=BD评注:本题主要考查对三角形的中位线定理,平行四边形的判定,菱形的判定等知识点的理解和掌握,能求出四边形是平行四边形是证此题的关键常用的结论:(1)任意四边形的中点四边形是平行四边形。(2)对角线相等的四边形的中点四边形是菱形。(3)对角线互相垂直的四边形的中点四边形是矩形。(4)对角线相等且户型垂直的四边形的中点四边形是正方形。(四)易错点剖析易错点:没有分情况讨论或所分情况不完整。 一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A、50 B、 50或40 C、50或40或30 D、50或30或20错解:解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;如图(1):AEF中,AE=AF=10cm;SAEF=AEAF=50cm;故选择A。错解分析:本题中由于等腰三角形的位置不确定,因此要分三种情况进行讨论求解,如图(1),如图(2),如图(3),分别求得三角形的面积。正解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:如图(1):AEF中,AE=AF=10cm;SAEF=AEAF=50cm;如图(2):AGH中,AG=GH=10cm;在RtBGH中,BG=AB-AG=16-10=6cm;根据勾股定理有:BH=8cm;SAGH=AGBH=810=40cm;如图(3):AMN中,AM=MN=10cm;在RtDMN中,MD=AD-AM=18-10=8cm;根据勾股定理有DN=6cm;SAMN=AMDN=106=30cm故选C评注:本题主要考查了等腰三角形的性质、矩形的性质、勾股定理等知识,解题的关键在于能够进行正确的讨论(五)真题演练1. (2011浙江省舟山,10,3分)如图,五个平行四边形拼成一个含30内角的菱形EFGH(不重叠无缝隙)若四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则四个平行四边形周长的总和为( )(A)48cm(B)36cm(C)24cm(D)18cm(第10题)2. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.2 B. C. D.6 3. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡分别架在墙体的点、点处,且,侧面四边形为矩形,若测得,则( )(第3题)A. 35 B. 40 C. 55 D. 704.( 2011重庆,10,4分)如图,正方形ABCD中,AB6,点E在边CD上,且CD3DE将ADE沿AE对折至AFE,延长EF交边BC于点G,连结AG、CF下列结论:ABGAFG;BGGC;AGCF;SFGC3其中正确结论的个数是( )A1 B2 C3 D45. (2011山东潍坊,16,3分)已知线段AB的长为a,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB的上方作正方形AENM.过E作EFCD,垂足为F点.若正方形AENM与四边形EFDB的面积相等,则AE的长为_.6. (2011广东广州市,18,9分) 如图4,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF 求证:ACEACF图6ABCDEF第二部分 练习部分1. (2011山东滨州,17,4分)将矩形ABCD沿AE折叠,得到如图所示图形。若CED=56,则AED的大小是_.(第1题)2. (2011浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为 . 图1 图2 图3 (第2题)3. (2011四川内江,16,5分)如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足 条件时,四边形EFGH是菱形ABCDEFGH(第3题)4. (2011湖北鄂州,5,3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为_ABCD(第4题)5. (2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是 .(第5题)6. (2011 浙江湖州,22,8) 如图已知E、F分别是ABCD的边BC、AD上的点,且BE=DF(1) 求证:四边形AECF是平行四边形;(2) 若BC10,BAC90,且四边形AECF是菱形,求BE的长 (第6题)7. (2011山东济宁,22,8分)数学课上,李老师出示了这样一道题目:如图,正方形的边长为,为边延长线上的一点,为的中点,的垂直平分线交边于,交边的延长线于.当时,与的比值是多少?经过思考,小明展示了一种正确的解题思路:过作直线平行于交,分别于,如图,则可得:,因为,所以.可求出和的值,进而可求得与的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由. (第7题)8. (2011浙江省嘉兴,23,12分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设ADC=(090), 试用含的代数式表示HAE; 求证:HE=HG; 四边形EFGH是什么四边形?并说明理由 (第8题图2)(第8题图3)(第8题图1)9. (2011甘肃兰州,27,12分)已知:如图所示的一张矩形纸片ABCD(ADAB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE。(1)求证:四边形AFCE是菱形;(2)若AE=10cm,ABF的面积为24cm2,求ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=ACAP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由。ABCDEFO(第9题)10. (2011江苏苏州,28,9分)如图,小慧同学吧一个正三角形纸片(即OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕B1点按顺时针方向旋转120,点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O运动所形成的图形是两段圆弧,即弧OO1和弧O1O2,顶点O所经过的路程是这两段圆弧的长度之和,并且这两端圆弧与直线l1围成的图形面积等于扇形AOO1的面积、AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕B1点按顺时针方向旋转90,按上述方法经过若干次旋转后,她提出了如下问题:问题:若正方形纸片OABC按上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形OABC按上述方法经过5次旋转,求顶点O经过的路程;问题:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是?请你解答上述两个问题.11 (2011江苏盐城,27,12分)情境观察将矩形ABCD纸片沿对角线AC剪开,得到ABC和ACD,如图1所示.将ACD的顶点A与点A重合,并绕点A按逆时针方向旋转,使点D、A(A)、B在同一条直线上,如图2所示观察图2可知:与BC相等的线段是 ,CAC= 图1 图2问题探究如图3,ABC中,AGBC于点G,以A为直角顶点,分别以AB、AC为直角边,向ABC外作等腰RtABE和等腰RtACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.图3拓展延伸如图4,ABC中,AGBC于点G,分别以AB、AC为一边向ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.图4“真题演练”答案1、A 2、A 3、C 4、C5、 6、证明:四边形ABCD为菱形BAC=DAC又AE=AF,AC=ACACEACF(SAS)“练习部分”答案1、622、3、AB=CD4、285、26、(1)证明:四边形ABCD是平行四边形,ADBC,且AD=BC,AFEC,BE=DF,AF=EC,四边形AECF是平行四边形.(2)四边形AECF是,AECE,12,BAC90,3902,4901,34,AEBE,BEAECEBC5.7、(1)解:过作直线平行于交,分别于点, 则,.,.,. (2)证明:作交于点,则,.,.,.(第7题)8、(1)四边形EFGH是正方形(2) HAE=90a在ABCD中,ABCD,BAD=180ADC=180a;HAD和EAB都是等腰直角三角形,HAD=EAB=45,HAE=360HADEABBAD3604545(180a)90aAEB和DGC都是等腰直角三角形,AE=AB,DG=CD,在ABCD中,AB=CD,AE=DG,HAD和GDC都是等腰直角三角形,DHA=CDG= 45,HDG=HADADCCDG90aHAEHAD是等腰直角三角形,HA=HD,HAEHDG,HE=HG四边形EFGH是正方形由同理可得:GH=GF,FG=FE,HE=HG(已证),GH=GF=FG=FE,四边形EFGH是菱形;HAEHDG(已证),DHG=AHE,又AHD=AHGDHG=90,EHG=AHGAHE90,四边形EFGH是正方形9(1)由折叠可知EFAC,AO=COADBCEAO=FCO,AEO=CFOAOEC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论