6显示仪表.doc_第1页
6显示仪表.doc_第2页
6显示仪表.doc_第3页
6显示仪表.doc_第4页
6显示仪表.doc_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章显示仪表在工业生产中,不仅需要使用不同的检测元件、变送器或传感器测量出生产中各个参数的大小,而且,还要求把这些测量值进行显示,或用字符、数字、图象等显示出来。这种作为显示被测量值的仪表,称之显示仪表。它只接收传送信号,起显示作用。显示仪表直接接收检测元件、变送器或传感器的输出信号,然后经测量线路和显示装置,把被测参数进行显示,以便提供生产必须的数据,让操作者了解生产过程的情况,更好地进行控制和生产管理。显示仪表按显示方式分为模拟显示、数字显示和图象显示。所谓模拟显示仪表是以仪表的指针(或记录笔)的线位移或角位移来模拟显示被测参数的连续变化的仪表。这类仪表使用了磁电偏转机构或电机式伺服机构,因此,测量速度较慢,读数容易造成多值性。但它可靠,又能反映出被测值的变化趋势,因此在目前工业生产中任大量地使用。所谓数字显示仪表是直接以数字形式显示被测参数量值大小的仪表。它具有测量速度快,精度高,读数直观,并且对所测参数便于进行数值控制和数字打印记录,也便于和计算机联用等特点。因此,这种仪表在常规仪表中得到了迅速的发展和广泛使用。所谓图象显示仪表就是直接把工艺参数的变化以文字、数字、符号和图象的形式在屏幕上进行显示的仪器。它是随着电子计算机的推广使用而相应发展起来的一种新型显示设备,其中应用比较普遍的是无纸记录仪、CRT显示器。图象显示的实质是属于数字式,它具有模拟式和数字式显示仪表两种功能,并具有计算机大存储量的记忆能力与快速性功能,它是计算机不可缺少的终端设备,不仅能把计算机处理过程中的中间数据及处理结果按操作者的需要显示出来,而且操作者还可以利用计算机通讯装置(如键盘、鼠标等)进行“人-机对话”。第一节 模拟显示仪表模拟显示仪表可分为动圈式显示仪表和电子平衡式显示仪表以及它们的变形品种。一、动圈显示仪表动圈显示仪表与热电偶、热电阻、霍尔变送器等配合用来指示温度、压力等工艺参数。它的特点是:结构简单,体积小,重量轻,价格便宜,使用维护方便,具有一定的抗干扰能力,因此在我国小型企业中仍然使用。目前我国生产的动圈显示仪表有XC型动圈式仪表、前置放大动圈式仪表、力矩电机式仪表和动磁式仪表等四种系列。按功能又可分为指示型(如XCZ型)和指示调节型(如XCT型,除了显示之外,还具有调节功能和越限报警功能)两类。1 测量机构的工作原理动圈式指示仪表是一个磁电式毫伏计。其中动圈是由具有绝缘层的细铜丝绕制而成的一个矩形框,如图1-1-1-1所示:由铍青铜制成的张丝,把可动线圈吊在永久磁铁和软铁芯之间的均匀磁场中。张丝除悬挂动圈之外,还引导电流流入动圈,提供反作用力矩。由毫伏信号x引起的电流流过动圈时,在磁场中产生电磁例句,使动圈偏转,并带动固定在动圈上的指针一起偏转。因动圈的偏转使张丝扭转而产生反力矩,并且反力矩随着转角的增大而增大。当反力矩与电磁力矩相等时,指针停止转动,并在刻度板上指示出相应的读数。动圈产生的电磁力矩与流过的电流成正比例关系,即:式中是与磁感应强度、动圈圈数和动圈的几何尺寸有关的系数,对一个定型的仪表,这些参数都是固定的,所以是一个常数。反力矩f与动圈的转角成正比例,即:f式中是张丝的尺寸、弹性和工作张力有关的系数,对定型仪表也是一个常数。达到平衡时,两力矩相等,即可得到:从上式可知,仪表指针的偏角与通过动圈的电流成正比。如输入信号x越大,流过动圈的电流也越大,则指针偏转的角也越大,刻度盘上指示的变量也越大。测量机构的组成动圈式指示仪表的测量机构由动圈系统、支撑系统、磁路系统、仪表量程电阻及温度补偿电阻等组成。动圈系统:系列仪表中的动圈是用直径.mm型漆包铜线绕制成无框架的矩形线框,其匝数为匝,分层绕制。动去那电阻在时为。动圈内框尺寸为mm,厚度约为.mm。这些数据是综合考虑了动圈的质量、匝数、电阻值及绕制工艺等因素后选定的。支撑系统:动圈仪表采用张丝支撑。张丝支撑具有无摩擦、灵敏度高、抗震性能好、寿命长等优点。一级精度的动圈仪表采用铍青铜张丝材料,一般在量程较小时采用规格为.(少数厂采用.)的张丝,其余都采用.。磁路系统:它由铁芯、极靴铁、永久磁铁、接铁和磁分路调节片等组成。永久磁铁的稳定性直接影响仪表读数的恒定性。磁分路调节片是用来调整空气隙中的磁感应强度,磁感应强度的值降低,仪表的示值也降低。动圈测量机构的串、并联电路:为了简化仪表的生产工艺,提高仪表的通用性,在设计中要求对不同量程的仪表能采用统一的表头组件。因此,在设计制造动圈测量机构时,应根据最小量程所需的灵敏度来考虑。当测量较大的信号时,必须串接一个电阻串,以限制流过动圈的电流,使输入信号的最大值与仪表的满刻度指示值相适应。因此,不同量程的串接电阻值不同,串接电阻串被称为仪表的量程电阻,要求阻值稳定。小量程,串不能取得太大,因此其阻尼特性不会太坏;大量程,串必然取得较大,因此其阻尼特性不好。在这种情况下,为了改善阻尼特性,可在动圈处并接一个电阻并。串,并均用锰铜线绕制。(一般只对配热电阻的调节仪表才采用并,以防止在阻尼太小的情况下,调节部分产生误动作。)动圈测量机构的温度补偿:因为动圈是由铜丝绕制的,随着仪表周围环境温度的变化,电阻值回该,从而使流过动圈的电流也会改变,这样就使仪表产生了附加误差(张丝和磁钢随温度变化读测量的影响能互相补偿)。通常采用热敏电阻作补偿元件。所用热敏电阻的阻值随温度升高而降低,与动圈电阻的变化趋势正好相反。实际中与一个锰铜电阻并联,再将它们与动圈相串接。误差分析基本误差分析:a.回差。由于张丝存在着弹性后效,所以也存在回差,不过回差很小。b.不完全平衡误差。c.刻度误差与调整误差。对逐个表顶刻度的仪表,有刻度不准引入的误差称为刻度误差;对预先制好标尺的仪表,则有装配后调整不准所带来的误差称为调整误差。附加误差分析:a.环境温度变化时产生的误差。b.外界磁场引起的误差。动圈式指示仪表配热电偶偶测量线路(型)配热电偶的动圈仪表的测量线路如图1-1-1-2所示。在使用时必须注意冷端温度补偿和外线路电阻两个问题,否则就产生较大误差。冷端温度补偿 配热电偶的动圈仪表是在热电偶冷端处于0条件下刻度的。如果冷端不是0,则动圈仪表的指示便不能真实地反映被测温度值,并产生一个随冷端温度变化的误差。因此,在实际测量温度中必须考虑冷端温度补偿问题。a.只用补偿导线:当仪表只配补偿导线时,若冷端温度t00为已知值,则E(t0,0)是一个可以确定的值。仪表输入的毫伏值加上E(t0,0)所对应的温度值,就是被测温度的实际值。在现场使用时,常常先把冷端温度t0测量出来,然后把仪表的机械零点调到t0上,即相当于把E(t0,0)预先加在仪表上。这样在测量过程中仪表的指示值就是被测量温度的实际值。但必须注意t0的变化,要经常调整仪表的机械零为。b.使用冷端补偿电桥和补偿导线:当仪表所处室温经常较大变化时,最好采用补偿导线和冷端补偿器一起配合使用。其测量线路如图1-1-1-2所示。通常冷端补偿电桥设在20时达到平衡,因此配套的动圈仪表的机械零位也应调在20处。而且必须注意动圈仪表的分度号、热电偶的分度号和补偿导线的分度号要一致。动圈仪表在运输时,接线柱(短)与(+)之间接好短接线,增大阻尼,以防止指针晃动而损坏仪表。使用时必须将它短开。外线路电阻 由于动圈仪表是通过电流来测量毫伏信号而得知温度的,因此,对于相同的毫伏值E(t0,0),如果整个测量回路的电阻值不同,流过动圈的电流值也会不同,则指针的指示也不同,因此产生一定的测量误差。为了保证仪表测量的准确性,一律规定陪接热电偶动圈仪表的外线路电阻为15。外线路电阻是热电偶电阻、补偿导线电阻、冷端补偿电桥的等效电阻、补偿电桥到仪表间的铜导线电阻以及外线路调整电阻RN总和,即:R外=R热+R补+R桥+R铜+RN=15必须注意,实际使用中各个测量点的测量温度不同,到仪表的距离不同,以及环境温度的不同,都会引起外线路电阻的不同,此时要借助来补足15。RN是锰铜丝线绕制成的。目前动圈仪表还设置了断偶保护线路。当热电偶一旦发生断丝,能使动圈仪表的指针偏向满度并报警,以便操作人员发现处理。断偶报警保护的具体内容参见过程控制手册。5动圈仪式指示仪表配接热电阻的测量线路(型)动圈仪表要求输入直流毫伏信号,因此,配接热电阻测温时,必须设法将随被测温度变化的热电阻值转换成直流毫伏信号,然后与动圈测量机构相配,以指示被测对象的温度。动圈指示仪的工作原理是:通过不平衡电桥把随温度变化的热电阻阻值转换成响应的直流毫伏信号,毫伏信号产生的电流流过动圈,引起动圈偏转,其转角的大小即指示出被测温度的高低。它的测量线路如图1-1-1-3所示。热电阻Rt采用三线制接法,这样两根连接导线就分别连接到相邻的两个桥臂上,当环境温度变化使连接导线电阻变化时,可以互相抵消一部分,从而减小附加误差。必须注意,热电阻三线制接法,每根连接导线电阻规定为5。若不足5,则必须用锰铜丝电阻补足到5。调整阻值应精确到(50.01)。另外,动圈仪表与热电阻配套使用时,必须注意仪表的分度号与热电阻分度号相同。6动圈仪式指示仪表配毫伏、毫安信号的测量线路输出为毫伏信号的测量线路 动圈式指示仪表除可与热电偶配套使用外,还可与WFT-202型辐射感温器,霍尔式压力变送器等以毫伏信号输出的仪表配套使用。这类仪表没有温度补偿,所以仪表的机械零位应调在起始位置。输出为毫安信号的测量线路 动圈式指示仪表也可作电动单元组合仪表等以毫安电流信号输出的显示仪表。这类仪表没有温度补偿,所以仪表的机械零位应调在起始位置。7动圈显示仪表型号命名和技术指标动圈显示仪表产品的相好命名有统一规定。产品型号一般由两节组成,第一节有三位,以大写汉语拼音字母表示;第二节用阿拉伯数字表示,也用三位;尾注以大写拼音字母表示,以一位为限,普通型不加尾注。第一节、第二节与尾注之间用短横线分开。其型号及意义如表1-1-1-1所示;测量线路及其技术指标如表1-1-1-2所示。8动圈式显示仪表的常见故障和处理XCZ-101型动圈式显示仪表的故障和处理 XCZ-101型动圈式显示仪表在运行中发生故障时,首先必须检查测温元件和测量线路,以及接线端子等是否存在故障。经过分段检查后,确定故障存在于动圈仪表本身,则可以按故障现象,根据表1-1-1-3分析原因,并进行处理。XCZ-102型动圈式显示仪表的故障和处理 XCZ-102型动圈式显示仪表的测量机构的常见故障和处理方法与XCZ-101型动圈式显示仪表基本相同。它的测量桥路的常见故障及处理方法见表1-1-1-4。表1-1-1-1 动圈仪表型号中各节、各位的代号及表示的意义第一节第二节尾 注第一位第二位第三位第一位第二位第三位代号意义代号 意义 代号意义代号 意义 代号 意义 代号 意义 代号 意 义X显示 C 动圈式磁电 Z 指 单标尺 配接检出 动圈式表示 F 前置放大式 示 设计序列或 表示调节方 元件 B 力矩电机式 仪 种类 式 1 热电偶 Y 位式延时 E 动磁式 指 1 高频振荡 0 二位调节 2 热电阻 D 位式带倒相 示 (固定参数)1 三位调节 3 霍尔变送器 T 三防型 调 2 高频振荡 (狭中间带) 或传感器 前置放大式 节 (可变参数)2 三位调节 4 电阻远传压 - 内磁、横式 仪 3 时间程序、 (宽中间带) 力表 S 竖式 高频振荡 3 时间比例 5 标准模拟直 A 外磁、横式 (固定参数) 调节 流电信号 B 竖式4 时间比例加 前置放大式二位调节 动圈指示调节仪5 时间比例加 铝旗控制时间比例 C 横式 6 电流PID加 D 竖式 二位调节 指示调节为并联8 电流比例 环节调节 A 外磁、横式9 电流PID B 竖式调节 - 内磁、横式 S 竖式表1-1-1-2 动圈式显示仪表的技术指标测量电路 检测元件 分度号测量范围 单位 电阻 一般技术指标 热 热 镍铬-康铜 E 0-300,0-400,0-600 安装形式:仪 电 电 镍铬-镍硅 K 0-600,0-800,0-1100,0-1300 15 表盘安装偶 偶 铂铹10-铂 S 0-1600 精度等级:1.0 或 铂铹30-铂铑6 B 0-1800 工作环境:其 700-1400,900-1800 温度 0-50 他 WFT-202辐射感温器 T2 1100-2000 5 相对湿度85 毫 输入信号0-20mV,分度以压力 无腐蚀性气体伏 霍尔式压力变送器 表部颁标准中1.5级分度 100kPa 无振动信 输入信号0-30mV,分度以差压 重量2kg号 CEB电子式压力变送器 计部颁标准中1.5级分度 100kPa热 热 Cu50 0-30,0-50,0-100,-50-50 安装形式:仪电 电 铜电阻 Cu100 50-100,0-150 表盘安装阻 阻 0-50,0-100,0-150,0-200 精度等级:1.0或 Pt10 0-250,0-300,0-400 刻度标尺:110其 铂电阻 Pt100 0-500,-50-50,-50-100 35工作环境:他 -100-0,0-30,-100-50,200-500 温度 0-50发 -100-100,-120-30,-150-50 相对湿度85信 -150-150,-200-50,-200-50 无腐蚀性气体电 0-1,0-1.6,0-2.5,0-4,0-6 无振动阻 0-10,0-16,0-25,0-40,0-60 100kPa 重量2kg 0-100,0-160,0-250,0-400 YCD-150远传压力计 0-600 -1-0.6,-1-1.5,-1-3,-1-5 100kPa -1-9,-1-15,-1-24 -760-0 mmHg表1-1-1-3 XCZ-101型动圈仪表测量机构常见故障处理 故障现象 故 障 原 因 处理方法仪表有信号输入时,指针不 量程电阻、张丝或动圈引头脱落或虚焊 重新焊好 动或不稳定 量程电阻或动圈断路 重新绕制 张丝断脱 更换新张丝 动圈短路 处理短路点 动圈部分短路 更换新动圈指针移动缓慢 张丝过松 重新焊好 动圈和铁芯或极靴之间有毛刺或其他杂物 清擦干净 张丝断脱 更换新张丝 指针位置过低碰刻度盘上沿,过高碰屏风板;指针头过 调整好指针指针呆滞或有卡针现象 短碰盘面,过长碰玻璃 盘面上有毛刺,可动部分活动区有杂物 清擦干净指示偏高 张丝受到腐蚀,弹性下降,焊接时张丝退火 调磁分路片或改变量程电阻或换新张丝 磁分路片位置变动 调磁分路片指示偏低 磁分路片位置变动 调磁分路片 磁钢拆卸后,磁感应强度减弱 改变量程电阻或充磁 盘面上有毛刺,可动部分活动区有杂物 清擦干净仪表回差大或回零不好 张丝内端销子不光滑,张丝不平直,有伤痕等 更换新的表1-1-1-4 XCZ-102型动圈仪表测量桥路常见故障处理故障现象 故 障 原 因 处理方法通电后指针指向终端极限 R0或R1虚焊或断路 重新焊好或接上位置 热电阻Rt线路断路 找出断路点,接上通电后指针指向始端极限 R3或R2虚焊或断路 重新焊好或接上位置 热电阻Rt线路短路 找出短路点,接上通电后,加入信号,指针 稳压电源整流部分无输出 如万用表测知变压器不动 二次侧无33VAC, 则系变压器有故障, 可重绕变压器;如有 系2CP12坏,更换。稳压电源限流电阻虚焊或断路 万用表依次测量R5 R6两端电压,如出现 开路电压,重焊或换。 稳压电源铜电阻或锰铜电阻虚焊或断路 万用表量铜电阻和锰 铜电阻端电压,出现 开路电压,重焊或换。 稳压管2CW15或2CW1被击穿 更换新管子R0、R2或R3、R4同时虚焊 重心焊好指示不稳定 电源变压器输出电压过低,造成温压电源输出电压不稳 变压器二次侧绕组部分短路,重新绕制 温压电源电容C虚焊或接反 重新焊好或接正确 温压管焊接不良或质量不好 焊好或更换新管子 铜电阻或锰铜电阻焊接不良 打去氧化层,焊好 2 3 RBR调 R串 4 RT RCU R1 N S R3 R2 R 1 4V图1-1-1-2 配用冷断补偿器和补偿导线的测量线路1热电偶;2补偿导线;3冷端补偿器;4动圈测量机构 R3 R4 1U 2 3 4 R2 R0 I N R1 R1 Ux S Rt Rrm Rrm RM RM R R 6 5 图1-1-1-3配热电阻动圈表三线接法和外接电阻法 图1-1-1-1动圈式指示仪表构造原理图 1动圈;2张丝;3铁芯;4永久磁铁;5指针;6刻度板 E IGP4 I1 B A2 I2 R3 W D Ux G Ux 图1-2-1-1 电压测量系统 图1-2-1-2 测量桥路原理图 B4 Pt E0 3 R2A 图1-2-2-1 平衡电桥 图1-2-1-3 电子电位差计工作情况 RP RB RG F H R4 RM I1 C B E A E I2 R2 R3 指 示 记 录 UX RP RB Rt R4 r6 R5 r5 R6 R1 I1 E R3 I2 R2 R1 图1-2-2-2 电子自动平衡电桥原理图二、自动平衡式显示仪表动圈式显示仪表虽然具有结构简单、易于安装维护等优点,但它们受环境和线路电阻的影响较大,仪表的准确性、灵敏度均受到限制,不宜用于精密测量和控制。另外动圈仪表的可动部分怕振动,易损坏,阻尼时间长,而且不便于实现自动记录。因此在自动化程度较高的过程中,要求对微弱的信号进行准确、快速的测量,实现自动记录与控制时,广泛地采用了自动平衡式显示仪表。常用的自动平衡式显示仪表有自动平衡电子电位差计、自动平衡电桥和电子交流平衡仪等三种基本形式。此次只讲述前两种。它们能自动测量、显示、记录各种电信号(直流电压、电流和电阻)。若配接热电偶、热电阻或其他能转换成直流电压、电流或电阻的传感器、变送器,就可以连续指示、记录生产过程中的温度、流量、压力、物位及成分等各种参数。如果附加一些装置,还可实现自动积算、报警与联锁和自动控制等多种功能。自动平衡式电子电位差计电子电位差计是用来测量电压信号的显示仪表。凡是能转换成电压的各种工艺参数都能用它来测量,并与电动调节器等配套,可进行自动记录和自动控制等等,1测量机构的工作原理电子电位差计是根据“电压补偿原理”工作的。以图1-2-1-1的电压测量系统来说明其原理。图中Ux为被测电压,滑线电阻W与稳压电源E组成一个闭和回路。因此,流过W上的电流I是恒定的,这样就可将W的标尺刻成电压数值。G为检流计。测量电压Ux的方法是移动滑动触点C,使通过检流计G的电流为零,这时触点C所指示的电压即是被测电压Ux。因要使检流计无电流通过,只能在已知电压UBC=Ux时才有可能,因此这种手动电位差计是根据滑线电阻上的已知电压UBC来平衡(补偿)被测电压Ux,使测量线路的电流等于零的测量电压的方法,称为“电压补偿法”。用这种测量电压比较精确,因为平衡时没有电流流过测量电路,也就是不存在线路电阻的影响问题。在电子电位差计中,已知电压是由不平衡电桥产生的,如图1-2-1-2所示。在此测量桥路中,是利用不平衡电桥的输出电压UCD偿被测电压Ux的,随着被测电压Ux的变化,滑动触点C的位置也作向左或向右的移动,当检流计G指示为零时,滑动触点C不再移动,停在某一个位置上,此时,UCD=Ux测量桥路呈现平衡状态。滑动触点C的位置越往右,表示被测电压值越大。如用电子放大器代替检流计,并把UCE放大器的输入信号,再由放大器驱动可逆电机,通过一套机械传动机构带动滑动触点C,那么测量过程就能自动进行了,如图1-2-1-3所示放大器的输入电压:UCE=UCD-Ux=UCF+UFB-UDB-Ux如果测量桥路达到平衡,即UCE=0,则:UCF+UFB-UDB-Ux=0当被测电压增加时,即Ux+Ux,测量桥路平衡被破坏,方程式UCF+UFB-UDB-Ux也不等于零。放大器有了正电压输入,可逆电机ND作顺时针方向转动,并带动滑动触点C向右移动到适当的位置,即:(UCF+UCF)+UFB-UDB-(Ux+Ux)=0时,测量桥路重新达到平衡。可逆电机带动滑动触点移动的同时,也带动指针和记录笔,指示或记录出增高后的电压值。反之,当被测电压降低时,放大器输入负的电压信号,可逆电机逆转,滑动触点向左移动,平衡指针指示出降低后的电压值。2 测量桥路中各电阻的作用和要求我国统一设计的测量桥路原理线路如图1-2-1-3所示。测量桥路的电源电压为1V,上支路电流I1=4mA,下支路电流I2=2mA,因此,上支路总电阻值为250,下支路则为500。起始电阻RG是决定仪表刻度始点(零位)的电阻,用锰铜电阻丝绕制,在不同下限的仪表中有不同的阻值,下限越高,RG越大。一般把起始电阻RG分作RG和两部分串联而成。rG可作微调,这样既便于调整,又能降低对RG的精度要求。调校时,若增大rG,则仪表指针向标尺下限方向偏移。桥臂电阻R2在配接热电偶测温时,作为热电偶冷端温度补偿电阻。目前常用的补偿电阻是铜电阻,用符号RCu表示,它是用电阻温度系数0=4.2510-3/的高强度漆包线(=0.1-0.2mm),采用无感双线法绕制,并经过老化处理。当配用镍铬-镍硅(K)热电偶时,RCu=(5.330.02)(25时);当配接铂铑10-铂(S)热电偶时,RCu=(0.740.01)(25时)。注意:若电子电位差计不是配接热电偶测温时,则R2应为锰铜丝线绕制。限流电阻R3是一个由锰铜丝绕制而成的固定电阻。它与R2配合,保证下支路回路的工作电流为2mA。由于铜电阻R2的阻值随温度而变化,因此,下支路回路工作电流I2只是在仪表的标准温度(一般为25)时才为2mA。R3准确度直接影响到下支路电流I2的大小,所以对它的精度有较高的要求,一般在0.2%以内。限流电阻R4是由锰铜电阻丝绕制的固定电阻。它与RnP(RP、RB、RM三个电阻并联后的等效电阻)、RG串联,使上支路回路电流为4mA。虽然电阻R4的准确度会影响上支路回路电流I1大小,但因上支路中有下限微调电阻rG和量程微调电阻rM可作微调,使仪表的上、下限(即仪表的量程和零位)符合设计要求,所以R4的允许偏差可达到0.5%。量程电阻RM是决定仪表量程大小的电阻。它与滑线电阻相并联。RM越大,则与RP、RB并联后的电阻越大,因而对应的仪表量程也越大;反之,RM越小,仪表量程就越小。为了仪表量程的微调,由RM和rM串联而成,只要调整rM的阻值,即能很方便地微调仪表的量程。滑线电阻RP是仪表测量系统中一个很重要的部件,仪表的示值误差、变差、灵敏度以及仪表运行的平滑性等等都和滑线电阻的优劣有关。因此,除了要求装配牢靠之外,对材料的耐磨、抗氧化、接触的可靠及绝缘性能等诸方面都有很高的要求。尤其是对滑线电阻的线性度要求更严格,在0.5级的仪表中,必须把非线性误差控制在0.2%范围内。常用的滑线电阻材料是锰铜丝,也有的采用裸锰丝、卡玛丝(镍铬铁铝合金)或银钯丝等材料。滑线电阻的滑触头的材料多采用银铜合金,型式有刷形、滚子两类。滑触头除要求抗氧化性能好之外,更重要的是它和滑线电阻的接触热电势要小,否则滑触头在滑线电阻上滑动时发热而产生较大的误差。特别是在快速测量的仪表中,必须把这一因素考虑进去。快速测量的仪表中采用滚子型较好。附加滑线电阻RP与滑线电阻RP平行布置,并将这只电阻的两端短路,作为桥路的引出线。在用滚子作滑触头时,两条平行的滑线电阻可以形成轨道,便于滚子滚动。由于它与滑线电阻用相同的材料制成,有利于接触热电势的抵消(图1-2-1-3中RP、rM、rG均未画出)。工艺电阻RB是RP的并联电阻。由于滑线电阻的阻值很难绕得十分准确,而且绕制成的电阻不便于用增减圈数的方法来调整阻值,为此,给滑线电阻RP并联一个电阻RB,使并联后的总阻值为一个固定的电阻值,即把RP与RB当作一个整体来处理。这样,便于计算和调整,有利于成披生产。而且当滑线电阻RP进行长期使用磨损后,阻值发生变化时,可通过改变RB的大小,方便地进行调整。我国通常选用RB与RP并联后的阻值为(900.1)。有的仪表中采用了卡玛带作为滑线电阻,其阻值较小,因此与RB并联后的阻值也小,一般约取RB与RP并联阻值为25-30。注意,上述的电阻R3、R4、RG、RM和RB都采用温度系数很小的锰铜丝进行无感双线绕制而成,绕制好的电阻同样也应经过老化处理后才能使用。电子自动平衡电桥电子自动平衡电桥也是一种自动平衡式显示仪表。它与热电阻配接使用时,可作为温度测量的显示仪表;当它与其他电阻型变送器、传感器相配用时,也可测量、显示、记录其他一些相应的工艺参数。它与电子电位差计相比较,除了感温元件及测量桥路外,其他组成部分几乎完全相同,甚至整个仪表的外壳形状、尺寸大小、内部结构以及大部分零部件都是通用的。因此,工业上通常把电子电位差计和电子平衡电桥统称为自动平衡显示仪表。1 测量机构的工作原理电子自动平衡电桥测量桥路的作用原理与电子电位差计是完全不同的。后者的测量桥路处于不平衡状态,其不平衡电压与被测电势相补偿后,仪表才达到平衡;而前者的测量桥路却处于平衡状态。图1-2-2-1为一个具有检流计的平衡电桥工作简图。热电阻Rt为其中一个桥臂,RP为滑线电阻,触点B可以左右移动。假设滑线电阻的刻度值为温度,移动滑动触头,使电桥达到平衡(检流计G中的电流为零)时,滑动触点B所指示的温度就是被测温度。若温度在量程起始点(即Rt值最小时),移动滑动触点B,使检流计G指零,电桥达到平衡,这时触点B必然处于滑线电阻的最左端。根据电桥平衡原理,则有: R3(Rt0RP)=R2R4当温度升高后,由于增大,触点B必然相右移动,使电桥重新达到平衡,这时有: R3(Rt0RPRtr1)=R2(R4r1)整理后得:R3 r1=Rt R2R3从上式可知,滑动触点B的位置可以反映出热电阻的变化,亦反映了温度的变化,并且它们之间是程线性关系的。此外,该桥路的滑线电阻处于两桥臂之间,这样可以消除接触电阻的影响,提高了精度。如果将检流计G换成电子放大器,利用放大后的电压去驱动可逆电机,使可逆电机带动滑动触点B以达到电桥平衡,就是电子自动平衡电桥的工作原理如图1-2-2-2所示。2 测量桥路中各电阻的作用和要求图1-2-2-2中,Rt采用三线制接法,使连接导线的电阻R1分别加在电桥相邻的两个桥臂上,当连接导线电阻随温度变化时,可以相互抵消,从而减小对仪表测量精度的影响。三线制接法即是从热电阻引出三根导线,把其中两根导线分别接入相邻的两个桥臂,而第三根导线与电源的负极相连,并规定每根接入桥臂的导线电阻为2.5,如不足2.5,则用调整电阻(锰铜丝绕制是电阻)补足。RP为滑线电阻,RP与RB并联后的电阻值为90。R5为量程电阻,R6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论