滤波器简介1.doc_第1页
滤波器简介1.doc_第2页
滤波器简介1.doc_第3页
滤波器简介1.doc_第4页
滤波器简介1.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一:微波滤波器的分类1)集总参数滤波器根据滤波器原型电路,最简单,最直接的结构是采用集总参数的电感、电容元件直接搭建滤波器电路,可以采用分立元件,也可以采用集成电路。集总参数滤波器的元件Q值较低6,在10GHz频段的Q值大约为100-200,这比较适合于低频信号的滤波。由于现代移动通讯频率都比较高,所以很少采用这类滤波器。2)微带线、带状线滤波器众所周知,布参数传输线可以等效为电感或电容,因此选用合理尺寸的传输线组合,可以构成滤波器电路,最为常用的是微带线和带状线结构,可以很方便地制成印制板,造成本低廉7。在结构设计上,主要有三种方式:梳状线、线、卡线。这类滤波器的特点是结构紧凑,阻带宽、容易制造;缺点是,Q值低(10GHz时Q值为150-200),插入损耗大,滤波特性一般。适用于小功率滤波场合。一些小功率,指标要求低的的干线放大器中,有使用。3)同轴腔体滤波器腔体滤波器因其通带插入损耗低、阻带抑制性高、承受较大功率、调谐方便等特点在通信系统中也应用广泛8。其中同轴腔体具有高Q值、损耗特性、电磁屏蔽和小尺寸等优异特点,但是如果在10GHz以上使用时,由于其物理尺寸很微小,所以制作精度很难达到。同轴腔形式的带通滤波器广泛应用于雷达、通信等系统,按照腔体结构不同,一般分为标准同轴腔、方腔同轴等。4)波导滤波器波导型滤波器是一种经常使用的无源微波滤波器,特别是在高频段、大功率的天线馈电系统中波导型滤波器能够发挥巨大的作用。波导腔体带通滤波器本质是一种选择频率电路,应用在雷达、电子战、通信等设备的微波设备中,它易于连接馈电装置,适合应用于较高功率的情况下,并且具有良好的性能。在信号的电平较小时,它一般都是用在8GHz到100GHz的范围内9。这种滤波器的主要功能应用是在通频带插入损耗和失真较小的情况下,使阻带的选择性能够得到足够的提供。比如说,在使用微波接收机时,不需要的带外信号被带通滤波器滤除掉,为了使前段噪声的特性得到保持;在使用微波发射机时,不需要的频率谱被滤波器减小,使得发射机的噪声不能传递到接收机。在不同的微波多工器上此种滤波器也得到应用,但是它最大的缺点是其尺寸大小显然比其他可应用在微波段的谐振器大。随着微波技术的迅猛发展,天线系统日趋复杂,对波导型滤波器的需求更大,范围更广,同时也对其性能提出更高要求。5)介质滤波器介质滤波器分为两种,一种TEM模式,它和传输线型滤波器原理相同,只不过尺寸更小,在400NHz-5GHz频率范围内的Q值为200-800,其插入损耗比较大,滤波特性也比较差,一般只在性能要求低的中频滤波中采用;另一种为TE01模介质滤波器,其Q值非常高,10GHz的Q值可以达到10000以上,900MHz时的Q值约为22000。这种滤波器兼有小尺寸和低损耗的特点。二:微波滤波器应用领域市场上的一些产品适用于对滤波器产品性能有超高要求的基站核心模块,实验室测试以及基站塔顶抗干扰应用.由于超高Q值及极好的温度稳定性,具有极低损耗,较好近带抑制及稳定性 .适用于基站,直放站等无线通信领域,实现低损耗,较高阻带抑制及选频功能腔体滤波器由谐振腔、调谐螺钉等组成的滤波器,与其他性质的滤波器比较,它的结构牢固,性能稳定可靠,体积小,Q值适中,高端寄生通带较远而且散热性能好,可用于较大功率和频率,主要运用于各大通信基站的前端滤波,滤除带外强干扰信号。腔体滤波器的工艺1.铝或铝合金铸件毛胚加工,普通铣床铣平面;2.加工中心铣内腔体和攻同平面上的螺纹孔;3.普通攻牙机床钻四周剩下的螺纹孔;4.超音频清洗;5.氧化镀银;6.品质检测。其具有多达200多个螺纹孔。三:滤波器的主要参数(Definitions)中心频率(CenterFrequency):滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽截止频率(CutoffFrequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。通带带宽(BWxdB):(下图)指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0100%,也常用来表征滤波器通带带宽。插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值带内波动(PassbandRiplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR1。对于一个实际的滤波器而言,满足VSWR1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。回波损耗(ReturnLoss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10|,为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量As-IL;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标矩形系数(KxdB1),KxdB=BWxdB/BW3dB,(X可为40dB、30dB、20dB等)。滤波器阶数越多矩形度越高即K越接近理想值1,制作难度当然也就越大延迟(Td):指信号通过滤波器所需要的时间,数值上为传输相位函数对角频率的导数,即Td=df/dv带内相位线性度:该指标表征滤波器对通带内传输信号引入的相位失真大小。按线性相位响应函数设计的滤波器具有良好的相位线性度,但频率选择性很差,限于脉冲、或调相信号传输系统应用。极点:是指在低通或者高通滤波器中,电抗元件的个数,如电感、电容;或者在带通滤波器中电抗元件对的数量。对全极点滤波器而言,其极点和阶数是一致的,并且其极点数量决定了滤波器幅频特性的陡峭程度。寄生响应:是由滤波元件本身的引线及寄生电感、电容等的电抗,在不同的频率下谐振导致。四:工程应用示意图随着无线设备的广泛使用,运营商的基站设备一直处于各种噪声的干扰中,每个基站都处于几种到几十种的噪声干扰中,大大降低了基站自身的灵敏度,造成KPI指标下降,严重影响用户感知。根据实际需求分析,选择适当的抗干扰滤波器产品,能有效抑制干扰,提升基站性能。滤波器上图是自带滤波器的RJ45接口千兆 超薄 以太网 贴片网络变压器 滤波器五:滤波器未来发展在下一代移动通信的基站中,对基站的重量和体积都有十分严格的控制。因此,必须减小滤波器的重量和体积,与此同时不能降低滤波器的性能。在工艺、材料和微波技术发展至今的情况下,制造这些微波滤波器选用高Q值、低损耗,具有一定介电常数的陶瓷材料加载介质谐振腔是一种必然,经过理论和实践方面的长期努力和积累,已经将这种介质谐振腔滤波器应用在移动通信系统中,而且会有很好的前景。 伴着滤波器技术的不断完善,其他各种新型滤波器如SAW滤波器、陶瓷介质滤波器、SIR滤波器、微波有源器件等也开始应用于各种通信系统中六:拓展阅读声表面波SAW(Surface Acoustic Wave)就是在压电基片材料表面产生并传播、且其振幅随深入基片材料的深度增加而迅速减少的弹性波。SAW滤波器的基本结构是在具有压电特性的基片材料抛光面上制作两个声电换能器叉指换能器(IDT)。它采用半导体集成电路的平面工艺,在压电基片表面蒸镀一定厚度的铝膜,再把设计好的两个IDT的掩膜图案,利用光刻方法沉积在基片表面,分别用作输入换能器和输出换能器。其工作原理是:输入换能器将电信号变成声信号,沿晶体表面传播,输出换能器再将接收到的声信号变成电信号输出。- SAW滤波器的主要特点是:设计灵活性大、模拟/数字兼容、群延迟时间偏差和频率选择特性优良(可选频率范围10MHz3GHz)、输入输出阻抗误差小、传输损耗小、抗电磁干扰(EMI)性能好、可靠性高、制作的器件体小量轻(其体积、重量分别是陶瓷介质滤波器的1/40和1/30左右),而且还能实现多种复杂的功能。SAW滤波器的特征和优点,正适应了现代通信系统设备以及便携式电话轻薄短小化和高频化、数字化、高性能、高可靠性等方面的要求。其不足之处是:所需基片材料价格昂贵,另外对基片的定向、切割、研磨、抛光和制造工艺要求高。受到基片结晶工艺苛刻和制造精度要求严的影响,日本富士通、三洋电器、丰田等少数几家掌握了压电基片生产技术的制造商几乎垄断了世界SAW滤波器的市场。富士通公司控制了移动电话用小型射频(RF)SAW滤波器全球市场40%左右的份额,目前其年产量在1.5亿只以上,体积最小的产品仅为2.52mm,重约22mg,集倒装式组件和专利谐振器型滤波器设计于一体,使滤波器性能出现了突破性飞跃。三洋电器公司是世界最大的视听家电用SAW滤波器制造商之一,为保持其价格上的优势,该公司在我国深圳设有组装厂,年产5000万只。丰田公司主要生产移动通信用SAW滤波器,可提供30多种标准型产品,均适合于表面贴装。介质滤波器(英文Dielectric filter)利用介质陶瓷材料的低损耗、高介电常数、频率温度系数和热膨胀系数小、可承受高功率等特点设计制作的,由数个长型谐振器纵向多级串联或并联的梯形线路构成。其特点是插入损耗小、耐功率性好、带宽窄,特别适合CT1,CT2,900MHz,1.8GHz,2.4GHz,5.8GHz,便携电话、汽车电话、无线耳机、无线麦克风、无线电台、无绳电话以及一体化收发双工器等的级向耦合滤波。更多内容请点击 /subject/200010/5279.html /rf-microwave/313497本文所用单位解析1、 dBmdBm是一个考征功率绝对值的值,计算公式为:10lgP(功率值/1mw)(非功率的话就是20了)。dBm 与P(瓦特)换算公式:dBm=30+10lgP (P:瓦 )例1 如果发射功率P为1mw,折算为dBm后为0dBm。例2 对于40W的功率,按dBm单位进行折算后的值应为:10lg(40W/1mw)=10lg(40000)=10lg4+10lg10+10lg1000=46dBm。dBm 定义的是 milliwatt。 0 dBm = 10log1 mw; dBw 定义 watt。 0 dBw = 10log1 W = 10log1000 mw = 30 dBm。2、dBi 和dBddBi和dBd是考征增益的值(功率增益),两者都是一个相对值, 但参考基准不一样。dBi的参考基准为全方向性天线,dBd的参考基准为偶极子,所以两者略有不同。一般认为,表示同一个增益,用dBi表示出来比用dBd表示出来要大2. 15。例3 对于一面增益为16dBd的天线,其增益折算成单位为dBi时,则为18.15dBi(一般忽略小数位,为18dBi)。例4 0dBd=2.15dBi。例5 GSM900天线增益可以为13dBd(15dBi),GSM1800天线增益可以为15dBd(17dBi)。3、dBdB是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率)dB的意义其实再简单不过了,就是把一个很大(后面跟一长串0的)或者很小(前面有一长串0的)的数比较简短地表示出来。如:X = 1000000000000000(多少个0了?)= 10logX = 150 dBX = 0.000000000000001 = 10logX = -150 dB 例6 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。例7 7/8 英寸GSM900馈线的100米传输损耗约为3.9dB。例8 如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB。例9 如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB。在dB,dBm计算中,要注意基本概念。比如前面说的 0dBw = 10log1W = 10log1000mw = 30dBm;又比如,用一个dBm 减另外一个dBm时,得到的结果是dB。如:30dBm - 0dBm = 30dB。4、dBc有时也会看到dBc,它也是一个表示功率相对值的单位,与dB的计算方法完全一样。一般来说,dBc 是相对于载波(Carrier)功率而言,在许多情况下,用来度量与载波功率的相对值,如用来度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等)以及耦合、杂散等的相对量值。 在采用dBc的地方,原则上也可以使用dB替代。5、dBuV根据功率与电平之间的基本公式V2=P*R,可知 dBuV=90+dBm+10*log(R),R为电阻值。载PHS系统中正确应该是dBm=dBuv-107,因为其天馈阻抗为50欧。6、dBuVemf 和d

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论