




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016年中考一模压轴题汇编海淀区一模28在ABC中,AB=AC,BAC=,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G(1)若点D在线段BC上,如图1.依题意补全图1;判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB =,则GE的长为_,并简述求GE长的思路图1 备用图29在平面直角坐标系中,C的半径为r,P是与圆心C不重合的点,点P关于C的限距点的定义如下:若为直线PC与C的一个交点,满足,则称为点P关于C的限距点,右图为点P及其关于C的限距点的示意图(1)当O的半径为1时分别判断点M ,N,T 关于O的限距点是否存在?若存在,求其坐标;点D的坐标为(2,0),DE,DF分别切O于点E,点F,点P在DEF的边上.若点P关于O的限距点存在,求点的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在DEF的边上沿EFDE的方向运动,C的圆心C的坐标为(1,0),半径为r.请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P关于C的限距点存在,且随点P的运动所形成的路径长为,则r的最小值为_若点P关于C的限距点不存在,则r的取值范围为_.西城区一模28在正方形中,点是射线上一个动点,连接,点,分别为,的中点,连接交于点(1)如图1,当点与点重合时,的形状是_;(2)当点在线段的延长线上时,如图2 依题意补全图2; 判断的形状,并加以证明;(3)点与点关于直线对称,且点在线段上,连接,若点恰好在直线上,正方形的边长为2,请写出求此时长的思路(可以不写出计算结果) 图1 图2 图329在平面直角坐标系中,对于点和图形,如果线段与图形无公共点,则称点为关于图形的“阳光点”;如果线段与图形有公共点,则称点为关于图形的“阴影点”(1)如图1,已知点,连接 在,这四个点中,关于线段的“阳光点”是 ; 线段;上的所有点都是关于线段的“阴影点”,且当线段向上或向下平移时,都会有上的点成为关于线段的“阳光点”若的长为4,且点在的上方,则点的坐标为 ;(2)如图2,已知点,与轴相切于点若的半径为,圆心在直线上,且上的所有点都是关于的“阴影点”,求圆心的横坐标的取值范围;(3)如图3,的半径是3,点到原点的距离为5点是上到原点距离最近的点,点和是坐标平面内的两个动点,且上的所有点都是关于的“阴影点”,直接写出的周长的最小值 东城区一模28. 如图,等边ABC,其边长为1, D是BC中点,点E,F分别位于AB,AC边上,且EDF=120.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.备用图29. 对于平面直角坐标系xOy中的点P和C,给出如下定义:若存在过点P的直线l交C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为C 的相邻点,直线l为C关于点P的相邻线.(1)当O的半径为1时,分别判断在点D(,),E(0,-),F(4,0)中,是O的相邻点有_; 请从中的答案中,任选一个相邻点,在图1中做出O关于它的一条相邻线,并说明你的作图过程. 点P在直线上,若点P为O的相邻点,求点P横坐标的取值范围;(2)C的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上存在C的相邻点P,直接写出圆心C的横坐标的取值范围 图1 备用图1朝阳区一模28在等腰三角形ABC中, AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转,旋转角与C相等,得到线段PD,连接DB(1)当C=90时,请你在图1中补全图形,并直接写出DBA的度数;(2)如图2,若C=,求DBA的度数(用含的代数式表示);(3)连接AD,若C =30,AC=2,APC=135,请写出求AD长的思路(可以不写出计算结果)图2图1 29在平面直角坐标系xOy中,A(t ,0),B(,0),对于线段AB和x轴上方的点P给出如下定义:当APB=60时,称点P为AB的“等角点”(1)若,在点,,中,线段AB的“等角点”是 ;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),OMN=30线段AB的“等角点”P在直线MN上,且ABP=90,求点P的坐标;在的条件下,过点B作BQPA,交MN于点Q,求AQB的度数;若线段AB的所有“等角点”都在MON内部,则t的取值范围是 石景山一模28在正方形ABCD中,E为边CD上一点,连接BE(1)请你在图1画出BEM,使得BEM与BEC关于直线BE对称;(2)若边AD上存在一点F,使得AF+CE=EF,请你在图2中探究ABF与CBE的数量关系并证明;(3)在(2)的条件下,若点E为边CD的三等分点,且CE0)的图象上,且点D的坐标为(1,1),设点O,D,E的最佳外延正方形的边长为,请直接写出的取值范围. 燕山区一模28在等边ABC外侧作直线AP,点B关于直线AP的对称点为D,连接AD,BD,CD,其中CD交直线AP于点E设PAB,ACE,AEC图1图2(1) 依题意补全图1;(2) 若15,直接写出和的度数;(3) 如图2,若60120,判断,的数量关系并加以证明;请写出求大小的思路(可以不写出计算结果)29在平面直角坐标系中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N)特别地,若图形M,N有公共点,规定d(M,N)0(1) 如图1,O的半径为2,点A(0,1),B(4,3),则d(A,O) ,d(B,O) 已知直线l:与O的密距d(l,O),求b的值(2) 如图2,C为x轴正半轴上一点,C的半径为1,直线与x轴交于点D,与y轴交于点E,线段DE与C的密距d(DE,C)0)与x轴,y轴分别交于点E,F,若线段EF与四边形ABCD的“近距离”是1,求它们的“远距离” ;(3)在平面直角坐标系xOy中,有一个矩形GHMN,若此矩形至少有一个顶点在以O为圆心,2为半径的圆上,其余各点可能在圆上或圆内.将四边形ABCD绕着点O旋转一周,在旋转的过程中,它与矩形GHMN的“远距离”的最大值是 ;“近距离”的最小值是 门头沟一模28在正方形ABCD中,连接BD(1)如图1,AEBD于E直接写出BAE的度数(2)如图1,在(1)的条件下,将AEB以A旋转中心,沿逆时针方向旋转30后得到ABE,AB与BD交于M,AE的延长线与BD交于N 依题意补全图1; 用等式表示线段BM、DN和MN之间的数量关系,并证明(3)如图2,E、F是边BC、CD上的点,CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路(不必写出完整推理过程) 图1 图229如图1,P为MON平分线OC上一点,以P为顶点的APB两边分别与射线OM和ON交于A、B两点,如果APB在绕点P旋转时始终满足OAOB=OP2,我们就把APB叫做MON的关联角图1 图2 图3(1)如图2,P为MON平分线OC上一点,过P作PBON于B,APOC于P,那么APB MON的关联角(填“是”或“不是”)(2) 如图3,如果MON=60,OP=2,APB是MON的关联角,连接AB,求AOB的面积和APB的度数; 如果MON=(090),OP=m,APB是MON的关联角,直接用含有和m的代数式表示AOB的面积(3)如图4,点C是函数(x0)图象上一个动点,过点C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,直接写出AOB的关联角APB的顶点P的坐标 图4平谷区一模28如图,在ABC中,ACB=90,AC=BC=CD,ACD=,将线段CD绕点C顺时针旋转90得到线段CE,连接DE,AE,BD(1)依题意补全图1;(2)判断AE与BD的数量关系与位置关系并加以证明;(3)若064,AB=4,AE与BD相交于点G,求点G到直线AB的距离的最大值请写出求解的思路(可以不写出计算结果)备用图图129对于两个已知图形G1,G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小长度为G1,G2的“密距”,用字母d表示;当线段PQ的长度最大时,我们称这个最大的长度为图形G1,G2的“疏距”,用字母f表示例如,当,时,点O与线段MN的“密距”为,点O与线段MN的“疏距”为(1)已知,在平面直角坐标系xOy中,点O与线段AB的“密距”为,“疏距”为 ;线段AB与COD的“密距”为,“疏距”为 ;(2)直线与x轴,y轴分别交于点E,F,以为圆心,1为半径作圆,当C与线段EF的“密距”0d1时,求C与线段EF的“疏距”f的取值范围备用图延庆区一模28. 在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y),给出如下定义:如果,那么称点Q为点P的“妫川伴侣”例如:点(5,6)的“妫川伴侣”为点(5,6),点(5,6)的“妫川伴侣”为点(5,6)(1) 点(2,1)的“妫川伴侣”为 ; 如果点A(3,1),B(1,3)的“妫川伴侣”中有一个在函数的图象上,那么这个点是 (填“点A”或“点B”)(2)点(1,2)的“妫川伴侣”点M的坐标为 ; 如果点(m+1,2)是一次函数y = x + 3图象上点N的“妫川伴侣”,求点N的坐标(3)如果点P在函数(2xa)的图象上,其“妫川伴侣”Q的纵坐标y的取值范围是4y4,那么实数a的取值范围是 29. 阅读下面材料:小伟遇到这样一个问题:如图1,在ABC(其中BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边PBC,求AP的最大值。 小伟是这样思考的:利用变换和等边三角形将边的位置重新组合他的方法是以点B为旋转中心将ABP逆时针旋转60得到ABC,连接AA,当点A落在AC上时,此题可解(如图2)(1)请你回答:AP的最大值是 (2)参考小伟同学思考问题的方法,解决下列问题: 如图3,等腰RtABC边AB=4,P为ABC内部一点,请写出求AP+BP+CP的最小值长的解题思路. 提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把ABP绕B点逆时针旋转60,得到. 请画出旋转后的图形 请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).通州一模28ABC中,于点,于点.(1)如图1,作的角平分线交于点,连接AF. 求证:;(2)如图2,连接,点G与点D关于直线对称,连接、.依据题意补全图形;用等式表示线段、之间的数量关系,并加以证明.29. 对于P及一个矩形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车实验室安全考试题库及答案解析
- 网络安全证书考试题库及答案解析
- 健康活动自己吃饭
- 金属铝板的专项施工方案
- 三亚房地产从业资格考试及答案解析
- 设计方案汇报资料
- 水坝发电工程施工方案
- 会计从业考试 方法及答案解析
- 喂丝机安装施工方案
- 国家赔偿方案范本
- 拆除工程安全监理细则(3篇)
- 2025合作伙伴商品配送合同
- 数字产品服务使用协议书
- 重庆市南开中学高2025-2026学年高三上学期开学第一次检测语文试卷
- (人教版2017课标)高中物理必修第三册 第十章综合测试及答案03
- 脑血管超声课件
- 机械检验考试试题及答案
- 汉语水平考试HSK四级真题4-真题-无答案
- 大疆:2024-2025农业无人机行业白皮书
- 2025年儿科学测验试卷答案及解析
- 地坪硬化合同(标准版)
评论
0/150
提交评论