




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初一暑期数学基础巩固与方法培养训练(代数部分)第一讲:二元一次方程组(一)(一)正确理解四个基本概念1二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程从定义中可以看出:二元一次方程具备以下四个特征:(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的次数最高为1,例如:像中,不是整式,所以就不是二元一次方程;像x+1=6,x+y-3z=8,不是含有两个未知数,也不是二元一次方程;像xy+6=1中,虽然含有两个未知数x、y且次数都是1,但未知项xy的次数为2,所以也不是二元一次方程,所以二元一次方程必须同时具备以上四点2二元一次方程组含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组,它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数,如,都是二元一次方程组,但就不是二元一次方程组3二元一次方程的一个解适合二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解一般地二元一次方程的解有无数个,例如x+y=2中,由于x、y只是受这个方程的约束,并没有被取某一个特定值而制约,因此,二元一次方程有无数个解但是它的特殊解往往是有限的,如正整数解、非负整数解等。4二元一次方程组的解二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解定义中的公共解是指同时使二元一次方程组中的每一个方程左右两边的值都相等,而不是使其中一个或部分左右两边的值相等,由于未知数的值必须同时满足每一个方程,所以,二元一次方程组一般情况下只有唯一的一组解,即构成方程组的两个二元一次方程的公共解(二)熟练掌握两种基本方法1代入消元法解方程组的基本思路是“消元”-把“二元”转化为“一元”,其主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法其主要步骤可以概括成三句话:(1)求关系式:用一个未知数的值去代替另一个未知数注意:求关系式时,应选取系数比较简单的方程进行变形(2)代入消元:将求得的关系式代入到另一个方程,消去其中的一个未知数,并求出另一个未知数的值注意:代入消元时,一定将求得的关系式代入另一个方程进行消元(3)回代得解:将求得的这个未知数的值代入关系式中,求出另一个未知数的值,最后写成方程解的形式回代得解时,应将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值,并写成方程解的形式,最后还要下结论2加减消元法通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法其主要步骤也可以概括成三句话:(1)变换系数:将某一未知数的系数变成相等或互为相反数注意:变换系数时,要选取系数较为简单的未知数作为消元对象,不要漏乘方程中的某一项,特别是常数项!(2)加减消元:就是将变形后的方程与另一个方程相加或相减,消去一个未知数注意:加减消元时,要将方程组中相同未知数上下对齐,以便观察是用加法还是用减法消元,并注意计算中容易错的地方,特别是符号!(3)回代得解:注意:回代得解时,可将求出的未知数的值回代到原来方程组中任意一个方程,从而求出另一个未知数的值,最后要写成解的形式!总之,代入法和加减法都是解二元一次方程组最基本最常见的方法,在解方程组时,如果题目无具体要求,可选用任何一种方法,至于选择哪种方法,一定要先对系数进行认真观察分析,根据系数的具体特点,选择较为简便的方法(三)密切关注两种基本思想消元转化1消元思想:同学们在学会了代入法和加减法解二元一次方程组,首先要搞清解方程组的基本思想就是:“消元”,它的基本模式就是:二元一次方程组 一元一次方程,它的基本方法就是:代入法和加减法通过代入或加减达到将“二元”转化为“一元”的目的2转化思想:解二元一次方程组的实质是通过消元将二元转化为一元,在这种“消元”中,渗透了化“未知”为“已知”的重要的转化思想方法列二元一次方程组解决实际问题的实质是将实际问题转化为数学问题转化是一种重要的思想方法,在解题中主要体会这种思想方法的灵活应用(四)例题讲解例1、下列方程是二元一次方程的是( )A、2x+x=1 B、x-3y C、x+x-3=0 D、x+y=2例2、二元一次方程,x+2y=7的正整数解有( )A、1组 B、2组 C、3组 D、4组例3、把方程3x-5y=2变形成用含x的代数式表示y的形式是( )A、x=15y+6 B、x=y+ C、y= D、y=例4、解方程组 运用提升:一、填空、选择题1、解一次方程组的基本思想是 ,基本方法是 和 。x1y32、已知方程:2xy3;x12;3y5;xxy10;xyz6.其中是二元一次方程的有_(填序号即可)3、试写出一个二元一次方程组,使它的解是 ,这个方程组可以是_.m1 n2ambn2ambn3 4、已知xy4且xy10,则2xy_.5、已知 是方程组 的解,则a_,b_.6、在中,用含的代数式表示,可得_;已知方程,写出用表示的式子得_。当时,_ 。7、由_,_。8、若是二元一次方程,则_ 。9、二元一次方程在正整数范围内的解是 方程的正整数解是_。x2 y1二、选择题:10、若方程ax2y4的一个解是 则a的值是( )A、1 B、3 C、1 D、311、二元一次方程2x3y4的解是( )A、任何一个有理数对 B、无穷多个数对,但不是任何一个有理数对C、仅有一个有理数对 D、有限个有理数对12、在方程2(x+y)3(yx)=3中,用含x的一次式表示y,则( )A 、 y=5x3 B 、y=x3 C、 y= D、 y=5x313、方程的正整数解是_ 。A、一4 B、4 C、0 D、任意数14、下列说法正确的A.二元一次方程2x+3y=17的正整数解有2组 15方程组有以下四种解法,你认为较简便的是()用加减法 用代入法先用,再用代入法先用+,再用代入法16、下列方程组中,属于二元一次方程组的是()A、B、C、D、17、下列各方程组中,属于二元一次方程组的是( )A、 B、 C、 D、 18、方程组的解是( )A、 B、 C、 D、19、用加减法解方程组时,有下列四种变形,其中正确的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025节能器采购合同书
- 2025解除房屋租赁合同协议书版本
- 2025江苏徐州市泉山国有资产投资经营有限公司部门负责人选聘2人(二)模拟试卷附答案详解(完整版)
- 2025年北京市二手车交易委托代理合同
- 2025年荆门市“招硕引博”考试考前自测高频考点模拟试题有答案详解
- 2025年“才聚齐鲁成就未来”山东泰安市泰山财产保险股份有限公司河南分公司社会招聘4人考前自测高频考点模拟试题及1套完整答案详解
- 2025企业集体合同协议
- 2025年度湖北省纪委监委考试录用公务员专业测试考前自测高频考点模拟试题及一套答案详解
- 经济学考试题库及答案
- 邮政财务考试题库及答案
- 湖南安全员c3考试试题及答案
- 2025年中学生心理健康测试题及答案
- 产品品质及售后无忧服务承诺书3篇
- 2025年第11个全国近视防控宣传教育月活动课件
- 患者跌倒的预防及管理课件
- 医疗设备验收单
- 质量体系调查表模板(空)
- 新型干法水泥回转窑系统介绍
- 竞选大学心理委员ppt模板
- T∕CEPPEA 5008-2021 城市电缆线路岩土工程勘察规范_
- 医师执业注册健康体检表
评论
0/150
提交评论