概率综合复习1.doc_第1页
概率综合复习1.doc_第2页
概率综合复习1.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

授课人:首都师范大学附属密云中学 孙凤有课题概率综合复习1课型复习课授课时间3月15日(星期二 )第1 课时(共 4 课时)教学目标知识目标搞清几个概念:“非等可能”与“等可能”、“互斥”与“对立”、“互斥”与“独立”。能力目标分析能力、计算能力的培养思想目标培养学生科学探索精神。教学重点几个易混淆的概念主要教法讲练结合教学难点概念的理解学习指导启发学生深思教 具常规用具板书设计【要点提示】 例1 例2 例3 例4 教学后记时间3教学过4程8教学内容及教师活动学生活动【要点提示】概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结:【例题选讲】例1 掷两枚骰子,求所得的点数之和为6的概率错解 掷两枚骰子出现的点数之和2,3,4,12共11种基本事件,所以概率为P=剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=类型二 “互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( ) A对立事B不可能事件C互斥但不对立事件 D以上均不对错解 A剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 : (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C类型三 “互斥”与“独立”混同例3 甲投篮命中率为O8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,则两人都恰好投中两次为事件A+B,P(A+B)=P(A)+P(B): 学生回答问题回忆旧知学生分析引申探索提高学生的求知欲时间教学内容及教师活动学生活动29剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同解: 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,且A,B相互独立,则两人都恰好投中两次为事件AB,于是P(AB)=P(A)P(B)= 0.169类型四 “条件概率P(B / A)”与“积事件的概率P(AB)”混同例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率解: P(C)= P(AB)=P(A)P(B/A)=.小结:概率内容的新概念较多,相近概念容易混淆,要把概念搞清楚作业1. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.()摸出2个或3个白球 ; ()至少摸出一个黑球.2 知甲、乙两人投篮的命中率分别为0.4和0.6现让每人各投两次,试分别求下列事件的概率:()两人都投进两球;()两人至少投进三个球.解1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论