



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3eud教育网 百万教学资源,完全免费,无须注册,天天更新!高三数学选修3-1模块考试1. 姓名、班级、考号写在密封线内2. 本试卷满分为100分,考试时间为60分钟。3考试形式:开卷班级: 姓名: 考号 O 密 O封 O线 O内 O不 O要 O答 O题一、选择题。(共12小题,每题5分,共60分)1周髀算经和( )是我国古代两部重要的数学著作。A.孙子算经 B.墨经 C.算数书 D.九章算术2中国数学史上最先完成勾股定理证明的数学家是( ) A.周公后人荣方与陈子 B.三国时期的赵爽 C.西汉的张苍、耿寿昌 D.魏晋南北朝时期的刘徽 3世界上第一个把计算到3.14159263.1415927的数学家是( ) A.刘徽 B. 阿基米德 C.祖冲之 D.卡瓦列利4以“万物皆数”为信条的古希腊数学学派是( )。 A.爱奥尼亚学派 B.伊利亚学派 C.诡辩学派 D.毕达哥拉斯学派5古希腊的三大著名几何尺规作图问题是( )三等分角 立方倍积 正十七边形 化圆为方A B C D 6. 几何原本的作者是( ) A.欧几里得 B.阿基米德 C.阿波罗尼奥斯 D.托勒玫7发现著名公式的数学家是( )A高斯 B.欧拉 C.柯西 D.牛顿8. 首先使用符号“0”来表示零的国家或民族是( )。 A.中国 B.印度 C.阿拉伯 D.古希腊9.1900年,希尔伯特在巴黎国际数学家大会上提出的著名数学问题共有( )A.18个 B.32个 C.23个 D.40个10.根据伽罗华的理论,能够用求根公式作出一般性解决的高次方程最多是( )方程A.三次 B.四次 C.五次 D.二次11. 被誉为中国人工智能之父,在几何定理的机器证明取得重大突破,并获得首届国家最高科学技术奖的数学家是( )A.张景中 B.吴文俊 C.华罗庚 D.陈景润12. 2006年,在西班牙马德里举行第25届国际数学家大会上,华裔科学家( )因为他对偏微分方程、组合数学、谐波分析和堆垒数论方面的贡献,获得被誉为“数学界的诺贝尔奖”的菲尔兹奖。 A陶哲轩 B.丘成桐 C.田刚 D.陈省身二、问答题:(共40分)13(10分)“一个违背万物皆数的理论,葬身了一双发现的眼睛;一次对真理苦苦的追寻,造就了基础数学中最重要的课程;一回回不断地完善理论系统,奠定了数学的基石。” 指的是数学史上的哪三次重大事件?14(15分)叙述费马大定理,并简要说明该定理的证明过程。15(15分)简述学习数学史的意义。 3-1数学史选讲参考答案1-12 DBCDB ABBCC BA13第一次数学危机无理数的发现 (第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有特殊地位。同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始从 “自明的”公理出发,经过演绎推理,并由此建立几何学体系。) 第二次数学危机无穷小是零吗 (直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决,第二次数学危机的解决使微积分更完善。)第三次数学危机罗素悖论的产生 (引发了关于数学逻辑基础可靠性的问题,导致无矛盾的集合论公理系统(即所谓ZF公理系统)的产生。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。)14费马大定理:不存在正整数x、y、z,使得;n为大于2的正整数。1:1676年,数学家根据费马的少量提示用无穷递降法证明n4。2:1770年,欧拉证明了n=3的情形3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。 5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。 6:1983年,德国数学家法尔廷斯证明了一条重要的猜想莫德尔猜想这样的方程至多有有限个正整数解,他由于这一贡献,获得了菲尔兹奖。 7:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。 8:1985年,德国数学家弗雷指出了“谷山志村猜想”和“费马大定理”之间的关系9:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山志村猜想”。 10:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”151、数学史揭示出数学知识的现实来源和应用,从而可以从中感受到数学在文化史和科学进步史上的地位与影响,认识到数学是一种生动的、基本的人类文化活动,以及数学在当代社会发展中的作用,并且关注数学与其他学科之间的关系。2、数学史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程。这既可以激发对数学的兴趣,培养探索精神。3、通过阅读许多数学家在成长过程中遭遇过挫折,了解一些大数学家是如何遭遇挫折和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电商绿色物流行业物流配送模式创新研究报告
- 给砖厂送煤矸石合同范本
- 高端救生衣采购合同范本
- 私人租赁车牌协议书范本
- 深度保洁服务协议书范本
- 职工公寓合租协议书范本
- 离婚了如何写财产协议书
- 瑜伽馆赠送课程合同范本
- 用就业协议代替劳动合同
- 水稻还田合同协议书范本
- 2025江苏科技大学辅导员考试题库
- 医院人力资源部门年终总结
- 急流救援IRB培训一(水域救援基础理论、艇操、船外机安装)
- 2025年宁波农商发展集团限公司招聘高频重点提升(共500题)附带答案详解
- 《眼内炎患者的疾病》课件
- 2024-2030年中国独立学院行业转型挑战分析发展规划研究报告
- 历年全国普通话考试真题50套
- 智能物业管理大数据应用方案
- 香港公司股东协议书范本
- DB43T 876.8-2015 高标准农田建设 第8部分:科技服务
- 普通洗车操作流程及操作指导书
评论
0/150
提交评论